首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
测绘学   1篇
大气科学   2篇
地球物理   5篇
地质学   3篇
天文学   5篇
自然地理   10篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
21.
22.
Within the scope of the upcoming launch of a new water related satellite mission (SMOS) a global evaluation study was performed on two available global soil moisture products. ERS scatterometer surface wetness data was compared to AMSR-E soil moisture data. This study pointed out a strong similarity between both products in sparse to moderate vegetated regions with an average correlation coefficient of 0.83. Low correlations were found in densely vegetated areas and deserts. The low values in the vegetated regions can be explained by the limited soil moisture retrieval capabilities over dense vegetation covers. Soil emission is attenuated by the canopy and tends to saturate the microwave signal with increasing vegetation density, resulting in a decreased sensor sensitivity to soil moisture variations. It is expected that the new low frequency satellite mission (SMOS) will obtain soil moisture products with a higher quality in these regions. The low correlations in the desert regions are likely due to volume scattering or to the dielectric dynamics within the soil. The volume scattering in dry soils causes a higher backscatter under very dry conditions than under conditions when the sub-surface soil layers are somewhat wet. In addition, at low moisture levels the dielectric constant has a reduced sensitivity in response to changes in the soil moisture content. At a global scale the spatial correspondence of both products is high and both products clearly distinguish similar regions with high seasonal and inter annual variations. Based on the global analyses we concluded that the quality of both products was comparable and in the sparse to moderate vegetated regions both products may be beneficial for large scale validation of SMOS soil moisture. Some limitations of the studied products are different, pointing to significant potential for combining both products into one superior soil moisture data set.  相似文献   
23.
Developing a robust drought monitoring tool is vital to mitigate the adverse impacts of drought. A drought monitoring system that integrates multiple agrometeorological variables into a single drought indicator is lacking in areas such as Ethiopia, which is extremely susceptible to this natural hazard. The overarching goal of this study is to develop a combined drought indicator (CDI-E) to monitor the spatial and temporal extents of historic agricultural drought events in Ethiopia. The CDI-E was developed by combining four satellite-based agrometeorological input parameters – the Standardized Precipitation Index (SPI), Land Surface Temperature (LST) anomaly, Standardized Normalized Difference Vegetation Index (stdNDVI) and Soil Moisture (SM) anomaly – for the period from 2001 to 2015. The method used to combine these indices is based on a quantitative approach that assigns a weight to each input parameter using Principal Component Analysis (PCA). The CDI-E results were evaluated using satellite-based gridded rainfall (3-month SPI) and crop yield data for 36 intra-country crop growing zones for a 15-year period (2001 to 2015). The evaluation was carried out for the main rainfall season, Kiremt (June-September), and the short rainfall season, Belg (February-May). The results showed that moderate to severe droughts were detected by the CDI-E across the food insecure regions reported by FEWS NET during Kiremt and Belg rainfall seasons. Relatively higher correlation coefficient values (r > 0.65) were obtained when CDI-E was compared with the 3-month SPI across the majority of Ethiopia. The spatial correlation analyses of CDI-E and cereal crop yields showed relatively good correlations (r > 0.5) in some of the crop growing zones in the northern, eastern and southwestern parts of the country. The CDI-E generally mapped the spatial and temporal patterns of historic drought and non-drought years and hence the CDI-E could potentially be used to develop an agricultural drought monitoring and early warning system in Ethiopia. Moreover, decision makers and donors may potentially use CDI-E to more accurately monitor crop yields across the food-insecure regions in Ethiopia.  相似文献   
24.
The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 and Polarimeter 2 on the James Clerk Maxwell Telescope. This paper describes the initial data obtained using HARP to observe 12CO, 13CO and C18O   J = 3 → 2  towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all the three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a clumpfind analysis of the 13CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.  相似文献   
25.
Long-term historical records of rainfall (P), runoff (Q) and other climatic factors were used to investigate hydrological variability and trends in the Volta River Basin over the period 1901-2002. Potential (Ep) and actual evaporation (E), rainfall variability index (δ), Budyko’s aridity index (IA), evaporation ratio (CE) and runoff ratio (CQ) were estimated from the available hydroclimatological records. Mann-Kendall trend analysis and non-parametric Sen’s slope estimates were performed on the respective time series variables to detect monotonic trend direction and magnitude of change over time.Rainfall variability index showed that 1968 was the wettest year (δ = +1.75) while 1983 was the driest (δ = −3.03), with the last three decades being drier than any other comparable period in the hydrological history of the Volta. An increase of 0.2 mm/yr2 (P < 0.05) was observed in Ep for the 1901-1969 sub-series while an increased of 1.8 mm/yr2 (P < 0.01) was recorded since 1970. Rainfall increased at the rate of 0.7 mm/yr2 or 49 mm/yr between 1901 and 1969, whereas a decrease of 0.2 mm/yr2 (6 mm/yr) was estimated for 1970-2002 sub-series. Runoff increased significantly at the rate of 0.8 mm/yr (23 mm/yr) since 1970. Runoff before dam construction was higher (87.5 mm/yr) and more varied (CV = 41.5%) than the post-dam period with value of 73.5 mm/yr (CV = 23.9%). A 10% relative decrease in P resulted in a 16% decrease in Q between 1936 and 1998. Since 1970, all the months showed increasing runoff trends with significant slopes (P < 0.05) in 9 out of the 12 months. Possible causes, such as climate change and land cover change, on the detected changes in hydroclimatology are briefly discussed.  相似文献   
26.

Evidence for very recent emission of volatiles on the Moon is primarily of four types: (1) transient lunar optical events observed by Earth-based astronomers; (2) excursions on Apollo SIDE and mass spectrometer instruments; (3) localized Rn222/Po210 enhancements on the lunar surface detected by Apollo 15 and 16 orbital alpha spectrometers; (4) presence in lunar fines of retrapped Ar40 and other volatiles. Available evidence indicates that the release rate of volatile substances into the lunar atmosphere is not steady, but instead sporadic and episodic. Rn222/Po210 anomalies are at locations that are among those from which transient events have most often been reported (edges of maria, certain specific craters), and are probably related to them. Volatiles emitted at maria rims may originate in the Moon's fluid core, reaching the surface through deep cylindrical fault systems that ring the maria borders. The sources of volatiles emitted at craters such as Aristarchus or Tsiolkovsky, which possess floors which are cracked or filled with dark lava and possess central peaks, are more likely to be local pockets of magma or trapped gas at shallower depths. The volatiles are produced directly by radioactive decay (He4, Ar40, Rn) and by heating (other volatiles). The release by heating can occur either during melting or by ‘bakeout’ of unmelted materials. Release of gas into the lunar atmosphere is probably triggered by buildup of its own pressure. This may be assisted by tidal forces exerted on the Moon by the Earth. In addition to independent release, volatile emission is also expected to accompany other lunar activity, such as ash flows, if any lunar volcanism is presently active.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号