首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
测绘学   1篇
大气科学   2篇
地球物理   5篇
地质学   3篇
天文学   5篇
自然地理   10篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
‘Alternative’ food initiatives (AFIs) are often interpreted as political movements, constructed as defiant alternatives to industrial agri‐food relations, and represented by a performance of singular alterity. This understanding of alternative collapses into a mere politics of identity, criticised in the literature for its oversimplification. In this paper, we utilise an established methodological framework that retains AFI diversity, to create a novel typology of AFIs by diverse and embodied practice rather than animating political project. In doing so, we point to the political potential for AFIs to ‘do’ food otherwise and make different worlds.  相似文献   
12.
Gold-bearing veins within the Liese zone of the Pogo deposit display a two-stage evolutionary history that records temporal variation in kinematics, fluid chemistry and temperature. Several stacked shallow northwest-dipping shear veins are developed at Pogo, and collectively comprise the Liese Zone. Veins consist of: (1) early, narrow biotite-bearing shear veins; (2) white quartz veins with pyrite-arsenopyrite bands, referred to as main stage quartz veins, that have sericite-Fe-Mg carbonate alteration envelopes and which exploit the early shear veins; and (3) extension veins that form as steeper offshoots from the main stage veins. The presence and orientation of oblique fabrics developed in the older biotite-bearing shear veins are indicative of top-to-the-south displacement under ductile to semi-brittle conditions at higher temperatures. In contrast, the orientation of the extension veins and local sigmoidal shapes indicate a component of top-to-the-northwest normal displacement on the main stage veins in their present orientation, and brittle to semi-brittle conditions of formation. Dolomite-sericite alteration surrounding main stage veins may represent late to post-mineral hydrothermal fluid exploitation of vein margins during ongoing normal displacement along vein systems. All types of veining overprint 107–106 Ma, post-metamorphic granitic dykes. Molybdenite in main stage quartz assemblages has returned Re-Os ages of 104.2±1.1 Ma, significantly older than 96 to 91 Ma 40Ar/39Ar ages obtained from vein alteration assemblages that may reflect thermal resetting during post-mineral fault related hydrothermal activity, magmatism and/or retrograde cooling of the lithologic sequence. Unlike typical mesothermal shear vein hosted gold systems, Pogo is temporally and tectonically separated from metamorphic deformation events, and has a comparable kinematic and geometric architecture to Cretaceous plutonic gold deposits in the region. We interpret the deposit to have formed during a regional Cretaceous extensional event during multi-stage exploitation of extensional fault surfaces by hydrothermal fluid from a cooling magmatic source.Editorial handling: S.G. Hagemann  相似文献   
13.
Geografisk Tidsskrift—Danish Journal of Geography 110(2):215–225, 2010

This paper presents an overview of the International Polar Year (IPY) research programme Dynamic Inuit Social Strategies in Changing Environments: A Long-Term Perspective. For this project, research teams from six separate multi-year subprojects performed fieldwork across much of the Canadian Arctic. Fieldwork and analysis revolved around two primary processes critical to the understanding of Inuit history: first, is the migration from Alaska to the east by the earliest Inuit, known as ‘Thule’, an apparently rapid event which replaced populations of the earlier, and culturally very different Dorset tradition; second, is the transformation of Thule Inuit into their more diverse recent cultural forms, involving abandonment of some regions, combined with major changes in settlement patterns, artifact form, architecture, economy, and social organization. The ultimate goal of the project is to understand the variable roles of climate change and social structures on the culture change which can be observed during the past 800 years of Inuit history.  相似文献   
14.
ABSTRACT

Trees concentrate rainfall to near-stem soils via stemflow. When canopy structures are organized appropriately, stemflow can even induce preferential flow through soils, transporting nutrients to biogeochemically active areas. Bark structure significantly affects stemflow, yet bark-stemflow studies are primarily qualitative. We used a LaserBark to compute bark microrelief (MR), ridge-to-furrow amplitude (R) and slope (S) metrics per American Society of Mechanical Engineering standards (ASME-B46.1–2009) for two morphologically contrasting species (Fagus sylvatica L. (European beech), Quercus robur L. (pendunculate oak)) under storm conditions with strong bark water storage capacity (BWSC) influence in central Germany. Smaller R and S for F. sylvatica significantly lowered BWSC, which strongly and inversely correlated to maximum funnelling ratios and permitted stemflow generation at lower rain magnitudes. Larger R and S values in Q. robur reduced funnelling, diminishing stemflow drainage for larger storms. Quercus robur funnelling and stemflow was more reliant on intermediate rain intensities and intermittency to maintain bark channel-dependent drainage pathways. Shelter provided by Q. robur’s ridged bark also appears to protect entrained water, lengthening mean intrastorm dry periods necessary to affect stemflow. Storm conditions where BWSC plays a major role in stemflow accounted for much of 2013’s rainfall at the nearest meteorological station (Wulferstedt).
Editor M.C. Acreman; Associate editor not assigned  相似文献   
15.
16.
Precipitation intercepted by forests plays a major role in more than one‐fourth of the global land area's hydrologic cycle. Direct in situ measurement of intercepted precipitation is challenging, and thus, it is typically indirectly estimated through comparing precipitation under forest cover and in the open. We discuss/compare measurement methods for forest precipitation interception beyond classical budgeting and then recommend future directions for improving water storage estimation. Comparison of techniques shows that methods submerging tree components produce the largest water storage capacity values. Whole‐tree lysimeters have been used with great success at quantifying water storage for the integrated system yet are unable to separate trunk versus canopy storage. Remote sensing, particularly signal attenuation, may permit this separation. Mechanical displacement methods show great promise and variety of techniques: pulley/spring system, branch strain sensors, trunk compression sensors and photography. Relating wind sway to water storage also shows great promise with negligible environmental disruption yet is currently at the proof‐of‐concept stage. Suggested future directions focus on development of common features regarding all discussed methods: (i) measurement uncertainties or processes beyond interception influencing the observed signal, (ii) scaling approaches to move from single tree components to the single‐tree and forest scales and (iii) temporal scaling to estimate the relevance of single‐interception components over longer timescales. Through addressing these research needs, we hope the scientific community can develop an ‘integrated’ monitoring plan incorporating multiple measurement techniques to characterize forest‐scale water storage dynamics while simultaneously investigating underlying (smaller‐scale) components driving those dynamics across the spectrum of precipitation and forest conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
17.
This study aims to evaluate soil climate quantitatively under present and projected climatic conditions across Central Europe (12.1°–18.9° E and 46.8°–51.1° N) and the U.S. Central Plains (90°–104° W and 37°–49° N), with a special focus on soil temperature, hydric regime, drought risk and potential productivity (assessed as a period suitable for crop growth). The analysis was completed for the baselines (1961–1990 for Europe and 1985–2005 for the U.S.) and time horizons of 2025, 2050 and 2100 based on the outputs of three global circulation models using two levels of climate sensitivity. The results indicate that the soil climate (soil temperature and hydric soil regimes) will change dramatically in both regions, with significant consequences for soil genesis. However, the predicted changes of the pathways are very uncertain because of the range of future climate systems predicted by climate models. Nevertheless, our findings suggest that the risk of unfavourable dry years will increase, resulting in greater risk of soil erosion and lower productivity. The projected increase in the variability of dry and wet events combined with the uncertainty (particularly in the U.S.) poses a challenge for selecting the most appropriate adaptation strategies and for setting adequate policies. The results also suggest that the soil resources are likely be under increased pressure from changes in climate.  相似文献   
18.
Within the scope of the upcoming launch of a new water related satellite mission (SMOS) a global evaluation study was performed on two available global soil moisture products. ERS scatterometer surface wetness data was compared to AMSR-E soil moisture data. This study pointed out a strong similarity between both products in sparse to moderate vegetated regions with an average correlation coefficient of 0.83. Low correlations were found in densely vegetated areas and deserts. The low values in the vegetated regions can be explained by the limited soil moisture retrieval capabilities over dense vegetation covers. Soil emission is attenuated by the canopy and tends to saturate the microwave signal with increasing vegetation density, resulting in a decreased sensor sensitivity to soil moisture variations. It is expected that the new low frequency satellite mission (SMOS) will obtain soil moisture products with a higher quality in these regions. The low correlations in the desert regions are likely due to volume scattering or to the dielectric dynamics within the soil. The volume scattering in dry soils causes a higher backscatter under very dry conditions than under conditions when the sub-surface soil layers are somewhat wet. In addition, at low moisture levels the dielectric constant has a reduced sensitivity in response to changes in the soil moisture content. At a global scale the spatial correspondence of both products is high and both products clearly distinguish similar regions with high seasonal and inter annual variations. Based on the global analyses we concluded that the quality of both products was comparable and in the sparse to moderate vegetated regions both products may be beneficial for large scale validation of SMOS soil moisture. Some limitations of the studied products are different, pointing to significant potential for combining both products into one superior soil moisture data set.  相似文献   
19.
Through in‐depth interviews and participant observation with 40 1.5 generation Korean New Zealander returnees, we explore life trajectories and identify both short‐ and long‐term reasons for return. Short‐term reasons for return include moving home when entering adulthood in order to begin a career, gaining new experiences and finding a future spouse. Longer term influences include the difficulties of living as minority‐status immigrants in the host society, transnational connections and a longing for a sense of ‘home’. Our consideration of longer term migration strategies sheds light upon the often forgotten difficulties and complexities that can underlie an individual's return.  相似文献   
20.
A model for radon diffusion through the lunar regolith is proposed in which the atom migrates by random walk. The regolith is represented by a system of randomly oriented baffles in which the mean distanced which the atom travels between two collisions takes on the role of a mean free path. The effective mean time between two collisions depends on two entities: the actual mean time-of-flight and the mean sticking time on grain surfaces for one collision. The latter depends strongly on the temperature and the heat of adsorption of radon on regolith materials. Bothd (mean free path) as well asQ (heat of adsorption) are either poorly known or unknown for the lunar regolith; hence these quantities are treated as free parameters. Because of the greatly different mean lifetimes against radioactive decay of219Rn,220Rn, and222Rn, the regolith acts as a powerful filter for these species.222Rn escape is significant (32%) even ford = 1µ,Q = 7.0 kcal/mole and a regolith depth of 4 m. Calculations of radon escape from a 4 m thick regolith, usingd = 1, 10 and 80µ andQ = 4.0, 5.2 and 7.0 kcal/mole show that the222Rn/220Rn escape ratio can be as small as 7.7 and as large as, or larger than 47. The small value of 7.7 is of particular interest, because it is nearly equal to the escape ratio inferred by Turkevichet al. from their Surveyor 5 results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号