首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   19篇
测绘学   3篇
大气科学   20篇
地球物理   89篇
地质学   108篇
海洋学   32篇
天文学   60篇
自然地理   50篇
  2022年   3篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   11篇
  2015年   9篇
  2014年   10篇
  2013年   20篇
  2012年   8篇
  2011年   18篇
  2010年   11篇
  2009年   17篇
  2008年   7篇
  2007年   14篇
  2006年   12篇
  2005年   10篇
  2004年   11篇
  2003年   11篇
  2002年   12篇
  2001年   12篇
  2000年   10篇
  1999年   11篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1986年   5篇
  1985年   10篇
  1984年   13篇
  1983年   3篇
  1982年   5篇
  1981年   11篇
  1980年   3篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   7篇
  1971年   2篇
  1966年   3篇
  1965年   1篇
  1964年   2篇
  1963年   1篇
排序方式: 共有362条查询结果,搜索用时 171 毫秒
151.
Resuspension of bottom sediments by waves and tidal currents was investigated in three characteristic environments of middle Chesapeake Bay (shallow platform, deep platform, and main channel). In the shallow near shore platform wind waves frequently resuspended significant amounts of sediment, some of which was transported offshore. In both the shallow and adjacent deep platform regions, tidal currents were too weak (<20 cm cm/sec) to resuspend bottom sediments. In the main channel, peak current velocities were substantially stronger (40 cm/sec), but were still not competent to erode the bottom. The stability of the bottom in this area is related to the activities of the benthic organisms which are influenced by seasonal anoxia. University of Maryland Center for Environmental and Estuarine Studies (CEES) Contribution No. 1572.  相似文献   
152.
153.
Vertical accretion rates were determined for brackish marshes in an estuarine tributary on the Eastern Shore of Chesapeake Bay. These rates determined on the basis of the peak phase of early European settlement as recorded in pollen spectra of the marsh sediments range between 0. 18 to 0.74 cm yr−1 over approximately the last 194 years and generally decrease down the estuary. More recent accretion rates (estimated from changes in pine pollen concentration) appear to have accelerated, exceeding the present local rate of sea level rise. The implications for using estuarine marsh accretion rates as surrogates for changes in sea level are discussed.  相似文献   
154.
155.
Summary In palaeomagnetism it is usually assumed that the distribution of directions of natural remanent magnetization at a site is Fisherian. This assumption is used here for an analysis of dispersion on a sphere when only inclination (and not declination) of NRM directions is known. By this method, in spite of the lack of declination data, the mean inclination and precision of the parent Fisherian population are estimated, together with the probable errors in these estimates. The method is tested against known Fisherian populations and is then used for dealing with data from borecores, where the way-up of cores and dip of the hole are known, but the azimuth of cores is not. Uses of the information derived from this analysis include estimations of age of NRM, support for palaeomagnetic data from surface studies, and comparison of dispersion of the palaeomagnetic field with that of the present geomagnetic field.  相似文献   
156.
Carbon markets and climate finance payments are being used to incentivize the mitigation of CO2 arising from anthropogenic land-use change in forests, marine ecosystems, and lowland grasslands. However, no such consideration has been given to how these ‘carbon finance incentives’ might be applied to mountain grasslands and shrublands, ecosystems that contain a substantial amount of carbon. These incentives amount to more than US$350 billion per annum and could potentially support underfunded natural resource management (NRM) activities, which are urgently needed to address numerous stressors impacting these important ecosystems. In the mountain context, NRM activities could include adaptive grazing management, sustainable cropping, ecosystem preservation, ecosystem restoration, and engineered soil conservation measures. This article investigates the stressors, challenges, and priorities related to the NRM of carbon stocks in mountain grasslands and shrublands; why carbon markets and climate finance have not yet been utilized in this context; and, what is required to position mountain-based NRM activities as eligible for carbon finance incentives. Using surveys and interviews triangulated with a systematic literature review, the study found that carbon finance incentives are not well understood, both amongst mountain-focused experts and in the literature. The study also found the required technical methodologies, policy frameworks, and data to be largely undeveloped. This article proposes a top-down conceptual policy framework that can be used to develop key ‘enabling factors’ with the view of extending the eligibility of carbon markets and climate finance to NRM activities undertaken in mountain grasslands and shrublands in the same way that has been afforded to other ecosystems.

Policy relevance

This is the first study to explicitly highlight the important role that the mountain grasslands and shrublands might play in international climate policy, and how carbon finance mechanisms might support better NRM in these areas. It is also the first to investigate why these incentives have not been adopted thus far. The article concludes by proposing a novel top-down ‘carbon incentive enabling’ framework that could be driven by governments and mountain development focused organizations so as to capture some of the opportunities offered by carbon-based incentives, and help meet international climate policy objectives.  相似文献   

157.
158.
Hydrogeomorphic processes influencing alluvial gully erosion were evaluated at multiple spatial and temporal scales across the Mitchell River fluvial megafan in tropical Queensland, Australia. Longitudinal changes in floodplain inundation were quantified using river gauge data, local stage recorders and HEC‐RAS modelling based on LiDAR topographic data. Intra‐ and interannual gully scarp retreat rates were measured using daily time‐lapse photographs and annual GPS surveys. Erosion was analysed in response to different water sources and associated erosion processes across the floodplain perirheic zone, including direct rainfall, infiltration‐excess runoff, soil‐water seepage, river backwater and overbank flood inundation. The frequency of river flood inundation of alluvial gullies changed longitudinally according to river incision and confinement. Near the top of the megafan, flood water was contained within the macrochannel up to the 100‐year recurrence interval, but river backwater still partially inundated adjacent gullies eroding into Pleistocene alluvium. In downstream Holocene floodplains, inundation of alluvial gullies occurred beyond the 2‐ to 5‐year recurrence interval and contributed significantly to total annual erosion. However, most gully scarp retreat at all sites was driven by direct rainfall and infiltration‐excess runoff, with the 24‐h rainfall total being the most predictive variable. The remaining variability can be explained by seasonal vegetative conditions, complex cycles of soil wetting and drying, tension crack development, near‐surface pore‐water pressure, soil block undermining from spalling and overland flow, and soil property heterogeneity. Implications for grazing management impacts on soil surface and perennial grass conditions include effects on direct rainfall erosion, water infiltration, runoff volume, water concentration along tracks, and the resistance of highly dispersible soils to gully initiation or propagation under intense tropical rainfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
159.
Traditional characterization of hyporheic processes relies upon modelling observed in‐stream and subsurface breakthrough curves to estimate hyporheic zone size and infer exchange rates. Solute data integrate upstream behaviour and lack spatial coverage, limiting our ability to accurately quantify spatially heterogeneous exchange dynamics. Here, we demonstrate the application of near‐surface electrical resistivity imaging (ERI) methods, coupled with experiments using an electrically conductive stream tracer (dissolved NaCl), to provide in situ imaging of spatial and temporal dynamics of hyporheic exchange. Tracer‐labelled water in the stream enters the hyporheic zone, reducing electrical resistivity in the subsurface (to which subsurface ERI is sensitive). Comparison of background measurements with those recording tracer presence provides distributed characterization of hyporheic area (in this application, ∼0·5 m2). Results demonstrate the first application of ERI for two‐dimensional imaging of stream‐aquifer exchange and hyporheic extent. Future application of this technique will greatly enhance our ability to quantify processes controlling solute transport and fate in hyporheic zones, and provide data necessary to inform more complete numerical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
160.
Managed aquifer recharge (MAR) is a tool available to water-resources managers that assists agencies to secure water supplies and protect aquifers and groundwater-dependent ecosystems in the face of climate change and growing water demand. Yet few natural-resources managers have access to a coordinated set of policies that enable the potential benefits of MAR to be fully realised in urban and rural areas. This paper reviews contemporary Australian water-resource policies and systematically applies a refined set of ‘robust separation of rights’ principles based on secure entitlements, annual allocations and end-use obligations to guide the coordination of policies specific to each of the four operational processes central to MAR schemes: source water harvesting, aquifer recharge, recovery of stored water and end use. Particular attention is given to the formulation of policies relating to the recovery of water, including the feasibility for market exchange of permanent and temporary rights to recover recharged water, as these have the potential to greatly expand the role of MAR. Aquifer characteristics, existing groundwater extractions and potential third party effects need to be taken into account in determining both recovery entitlements and annual allocations. A transitional pathway to implement novel MAR policies is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号