首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   641篇
  免费   11篇
  国内免费   11篇
测绘学   2篇
大气科学   49篇
地球物理   60篇
地质学   377篇
海洋学   41篇
天文学   20篇
综合类   1篇
自然地理   113篇
  2016年   4篇
  2014年   4篇
  2013年   44篇
  2012年   17篇
  2011年   13篇
  2010年   18篇
  2009年   17篇
  2008年   19篇
  2007年   11篇
  2006年   22篇
  2005年   17篇
  2004年   24篇
  2003年   8篇
  2002年   19篇
  2001年   14篇
  2000年   21篇
  1999年   17篇
  1998年   13篇
  1997年   25篇
  1996年   31篇
  1995年   8篇
  1994年   16篇
  1993年   16篇
  1992年   18篇
  1991年   37篇
  1990年   22篇
  1989年   13篇
  1988年   15篇
  1987年   11篇
  1986年   15篇
  1985年   14篇
  1984年   8篇
  1983年   5篇
  1982年   8篇
  1981年   5篇
  1980年   3篇
  1979年   7篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1974年   3篇
  1973年   4篇
  1972年   6篇
  1971年   5篇
  1969年   7篇
  1968年   5篇
  1967年   5篇
  1966年   6篇
  1965年   3篇
  1963年   5篇
排序方式: 共有663条查询结果,搜索用时 15 毫秒
111.
Abstract

A geographical information system (GIS) has proved to be a valuable tool in the Direct/Delayed Response Project—a comprehensive examination of the future, long-term chemical response of surface waters to acidic deposition. The role of the GIS within the project includes aggregation, analysis and display of various forms, scales and projections of environmental data related to acidic deposition. The GIS is particularly valuable for effectively communicating key scientific findings and results of regional, national and international importance to a diverse audience.  相似文献   
112.
Geographic modeling systems should support simulation of mobile individuals in dynamic landscapes. In modeling a small population (e.g. an endangered species), it is important to keep track of individuals over time and space, interactions between individuals, landscape processes over time and space, interactions among landscape processes, and interactions of individuals with landscape processes. An object-oriented simulation modeling system was designed to meet these requirements. A prototype demonstrates the capabilities with hypothetical animals in static and dynamic landscapes.  相似文献   
113.
The basement of the Philippine Mobile Belt (PMB) is mainly composed of ophiolites that are mostly overlain by Paleogene to Miocene turbidites in central Luzon. To clarify the geological development of the PMB with respect to the initial stage of the arc volcanism (eg. Yumul et al., 2003, 2008; Dimalanta and Yumul, 2003; Suzuki et al., 2011), radiolarian dating was examined in siliceous sediments associated with the ophiolites and turbidites. The samples were collected from sites identified with the Zambales and Montalban ophiolites, basic tuff phyllites in NW Din-galan, and their overlying formations.  相似文献   
114.
Oligo–Miocene carbonates associated with the Padthaway Ridge form the southern margin of the Murray Basin, South Australia. The carbonates are a thin, somewhat condensed succession of echinoid and bryozoan‐rich limestones that record accumulation in the complex of islands and seaways and progressive burial of the Ridge through time. The rocks are grainy to muddy bioclastic packstones, grainstones and floatstones, composed of infaunal echinoderms, bryozoans, coralline algae and benthic foraminifera, with lesser contributions from molluscs and serpulid worms. Locally as much as half of these skeletal components are Fe‐stained, relict grains that imbue the lithologies with a conspicuous yellow to orange hue. This variably lithified succession is partitioned into metre‐scale, firmground‐bounded and hardground‐bounded beds textured by extensive Thalassinoides burrows. Dominant lithologies are interpreted as temperate seagrass facies. Limestones contain attributes indicative of both seagrass‐dominated palaeoenvironments and carbonate production and accumulation on unconsolidated, barren sandflat palaeoenvironments. Together these two depositional systems are thought to have generated a single multigenerational, amalgamated facies recording sedimentation within a complex temperate seagrass environment. Limestones overlying the Padthaway Ridge reflect a gradually warming climate, increasing water temperature and decreasing nutrient content, within the framework of a ridge gradually being buried in sediment. This succession from cool–temperate to warm–temperate to subtropical through time permits recognition of the relative influence of changing oceanography on a seagrass‐dominated shallow inter‐island sea floor. Criteria are proposed herein to enable future recognition of similar temperate seagrass facies in Cenozoic limestones elsewhere.  相似文献   
115.
Anomalously saline waters in Ocean Drilling Program Holes 1127, 1129, 1130, 1131 and 1132, which penetrate southern Australian slope sediments, and isotopic analyses of large benthic foraminifera from southern Australian continental shelf sediments, indicate that Pleistocene–Holocene meso‐haline salinity reflux is occurring along the southern Australian margin. Ongoing dolomite formation is observed in slope sediments associated with marine waters commonly exceeding 50‰ salinity. A well‐flushed zone at the top of all holes contains pore waters with normal marine trace element contents, alkalinities and pH values. Dolomite precipitation occurs directly below the well‐flushed zone in two phases. Phase 1 is a nucleation stage associated with waters of relatively low pH (ca 7) caused by oxidation of H2S diffusing upward from below. This dolomite precipitates in sediments < 80 m below the sea floor and has δ13C values consistent with having formed from normal sea water (? 1‰ to + 1‰ Vienna Pee Dee Belemnite). The Sr content of Phase 1 dolomite indicates that precipitation can occur prior to substantial metastable carbonate dissolution (< 300 ppm in Holes 1129 and 1127). Dolomite nucleation is interpreted to occur because the system is undersaturated with respect to the less stable minerals aragonite and Mg‐calcite, which form more readily in normal ocean water. Phase 2 is a growth stage associated with the dissolution of metastable carbonate in the acidified sea water. Analysis of large dolomite rhombs demonstrates that at depths > 80 m below the sea floor, Phase 2 dolomite grows on dolomite cores precipitated during Phase 1. Phase 2 dolomite has δ13C values similar to those of the surrounding bulk carbonate and high Sr values relative to Phase 1 dolomite, consistent with having formed in waters affected by aragonite and calcite dissolution. The nucleation stage in this model (Phase 1) challenges the more commonly accepted paradigm that inhibition of dolomitization by sea water is overcome by effectively increasing the saturation state of dolomite in sea water.  相似文献   
116.
The depositional stratigraphy of within‐channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular ‘unit’ bars and complex ‘compound’ bars), as well as the infill of individual channels (herein termed ‘channel fills’). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within‐channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1·3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (< 1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground‐penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain‐size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object‐based models of sandy braided river alluvial architecture.  相似文献   
117.
The Chatham Islands, at the eastern end of the Chatham Rise in the South‐west Pacific, are the emergent part of a Late Cretaceous to Cenozoic stratovolcano complex that is variably covered with limestones and fossiliferous tuffs. Most of these deposits accumulated in relatively shallow, high‐energy, tide‐influenced palaeoenvironments with deposition punctuated by periods of deeper‐water pelagic accumulation. Carbonate components in these neritic deposits are biogenic and dominated by molluscs and bryozoans – a heterozoan assemblage. The widespread Middle to Late Eocene Matanginui Limestone contains local photozoan elements such as large benthonic foraminifera (especially Asterocyclina) and calcareous green algae, reflecting the general Palaeogene sub‐tropical oceanographic setting. More localized Late Eocene to Oligocene deposits (Te One Limestone) as well as Pliocene carbonates (Onoua Limestone) are, however, wholly heterozoan and confirm a generally cooler‐water oceanographic setting, similar to today. Early sea floor diagenesis is interpreted to have removed most aragonite components (infaunal bivalves and epifaunal gastropods). Lack of aragonite resulted in the absence of intergranular calcite cementation during subaerial exposure, such that most carbonates are friable or unlithified. Cementation is, however, present at nodular hardground–firmground caps to metre‐scale cycles. Such cements are microcrystalline or micrometre‐thick isopachous circumgranular rinds with insufficient definitive attributes to pinpoint their environment of formation. The overall palaeoenvironment of deposition is interpreted as mesotrophic, resulting in part from upwelling about the Chatham volcanic massif and in part from nutrient element delivery from the adjacent volcanic terrane and coeval volcanism. Biotic diversity in tuffs is two to three times that in limestones, supporting the notion of especially high nutrient availability during periods of volcanism. These mid‐latitude deposits are strikingly different from their low‐latitude, tropical, photozoan counterparts in the volcanic island–coral reef ecosystem. Ground water seepage and fluvial runoff attenuate coral growth and promote microbial carbonate precipitation in these warm‐water settings. In contrast, nutrients from the same sources feed the system in the Chatham Islands cool‐water setting, promoting active heterozoan carbonate sedimentation.  相似文献   
118.
The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Waves Nearshore) wave model.The results show that radiation stress can cause both set-up and set-down in the storm surge.Wave-induced set-up near the coast can be explained by decreasing significant wave heights as the waves propagate shoreward in an approximately uniform direction;wave-induced set-down far from the coast can be explained by the waves propagating in an approximately uniform direction with increasing significant wave heights.The shoreward radiation stress is the essential reason for the wave-induced set-up along the coast.The occurrence of set-down can be also explained by the divergence of the radiation stress.The maximum wave-induced set-up occurs on the right side of the Typhoon path,whereas the maximum wave induced set-down occurs on the left side.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号