首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51633篇
  免费   921篇
  国内免费   468篇
测绘学   1302篇
大气科学   3933篇
地球物理   10601篇
地质学   18686篇
海洋学   4343篇
天文学   10804篇
综合类   95篇
自然地理   3258篇
  2021年   367篇
  2020年   419篇
  2019年   416篇
  2018年   979篇
  2017年   957篇
  2016年   1191篇
  2015年   730篇
  2014年   1173篇
  2013年   2571篇
  2012年   1363篇
  2011年   1888篇
  2010年   1610篇
  2009年   2128篇
  2008年   1875篇
  2007年   1833篇
  2006年   1851篇
  2005年   1446篇
  2004年   1468篇
  2003年   1386篇
  2002年   1372篇
  2001年   1219篇
  2000年   1224篇
  1999年   1034篇
  1998年   999篇
  1997年   1090篇
  1996年   869篇
  1995年   875篇
  1994年   853篇
  1993年   747篇
  1992年   720篇
  1991年   642篇
  1990年   709篇
  1989年   611篇
  1988年   650篇
  1987年   699篇
  1986年   624篇
  1985年   855篇
  1984年   900篇
  1983年   919篇
  1982年   792篇
  1981年   763篇
  1980年   786篇
  1979年   666篇
  1978年   661篇
  1977年   605篇
  1976年   608篇
  1975年   573篇
  1974年   615篇
  1973年   599篇
  1972年   382篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This article evaluates whether a sediment budget for the South River, Maryland, can be coupled with metals data from sediment cores to identify and quantify sources of historic metal inputs to marsh and subtidal sediments along the estuary. Metal inputs to estuarine marsh sediments come from fluvial runoff and atmospheric deposition. Metal inputs to subtidal sediments come from atmospheric deposition, fluvial runoff, coastal erosion, and estuarine waters. The metals budget for the estuary indicates that metal inputs from coastal erosion have remained relatively constant since 1840. Historical variations in metal contents of marsh sediments have probably resulted primarily from increasing atmospheric deposition in this century, but prior to 1900 may reflect changing fluvial sources, atmospheric inputs, or factors not quantified by the budget. Residual Pb, Cu, and Zn in the marsh sediments not accounted for by fluvial inputs was low to moderate in 1840, decreased to near zero circa 1910, and by 1987 had increased to levels that were one to ten times greater than those of 1840. Sources of variability in subtidal cores could not be clearly discerned because of geochemical fluxes, turbulent mixing, and bioturbation within the cores. The sediment-metal budgeting approach appears to be a viable method for delineating metal sources in small, relatively simple estuarine systems like the South River and in systems where recent deposition (for example, prograding marshes) prevents use of deep core analysis to identify background levels of metal. In larger systems or systems with more variable sources of sediment and metal input, however, assumptions and measurement errors in the metal budgeting approach suggest that deep core analysis and normalization techniques are probably preferable for identifying anthropogenic impacts.Field and laboratory research conducted at the Department of Geography, University of Maryland, College Park, Maryland, 20742, USAField and laboratory research conducted at the Marine and Estuarine Environmental Science Program, University of Maryland, College Park, Maryland, 20742, USA  相似文献   
992.
The Precipitation of carbonate cements in the Pobitite Kamani area (Lower Eocene) began during early diagenesis of sediments. There is evidence, however, that calcite is still forming today.The negative 13C values to –29.2 suggest that the carbonate formed during degradation of 12C-enriched organic matter (perhaps partly from oxidation of methane). The 18O values of –0.9 to –1.6 reflect the marine origin of the early diagenetic carbonate cements. Most of the carbonates, however, formed during late diagenesis (at approximately 1300 m burial depth) and/or recently (after uplift) from percolating groundwaters. These carbonates have an isotopic composition characteristic of carbonates which precipitated from meteoric waters under normal sedimentary temperatures in isotopic equilibrium with 12C-enriched soil carbon dioxide.  相似文献   
993.
This pilot study examines the potential of obtaining a sedimentary record of paleoenvironmental/climatic/hydrologic conditions for saline Redberry Lake in southern Saskatchewan, Canada. The tools are mineralogy, stable isotopes and pigments. The upper meter of an offshore sediment core contains 10 to 20% by weight aragonite (CaCO3), which apparently precipitated in the water column. The 18O and 13C of the bulk aragonite (corrected for content of detrital calcite) vary by 4 to 5. Enrichment in 18O in aragonite is significantly correlated with pigment concentrations (chlorophyll a, phaeophytin). The 18O and pigment data provide evidence for relatively dry and/or warm conditions and high limnetic productivity for the period 2500 to 1500 yrs B.P. After 1500 B.P., the climate was apparently similar to the present, with two episodes of relatively enhanced productivity, dryness and/or warmth, at around 1000 to 900 and 500 to 200 B.P. During the past century, Redberry Lake has decreased approximately 8 m in depth and its salinity has doubled. No clear sedimentary signal was observed in response to these recent hydrologic trends. These changes have not been associated with a significant climate trend in the region, but may have been induced by land use changes in the catchment.This publication is the third of a series of papers presented at the Conference on Sedimentary and Paleolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor for this series.  相似文献   
994.
In a simplified model of the Earth-Moon-Sun system based on the restricted circular 3-dimensional 3-body problem, it is possible to find numerically a set of 8 periodic orbits whose time evolutions closely resemble that of the Moon's orbit. These orbits have a period of 223 synodic months (i.e. the period of the Saros cycle known for more than two millennia as a means of predicting eclipses), and are characterized by a secular rotation of the argument of perigee . Periodic orbits of longer durations exhibiting this last feature are very abundant in Earth-Moon-Sun dynamical models. Their arrangement in the space of the mean orbital elements- for various values of the lunar mean motion is presented.  相似文献   
995.
By using theD-criterion Lindblad (1992) has identified 14 asteroid families from a sample of 4100 numbered asteroids with proper elements from Milani and Kneevi (1990). Taxonomic types and other physical properties for a significant number of objects in five of the families show strong homogeneity within each family, further strengthening their internal relationship.To test the hypothesis of a common origin in, e.g., a catastrophic collision event, we have set out to integrate the orbits of the members of the Maria, Dora and Oppavia-Gefion families over some 106 years. The mean distance for the Maria family is close to the 3:1 mean-motion resonance with Jupiter, while the other two families lie close to the 5:2 resonance.We used a simplified solar system model which included the perturbations by Jupiter and Saturn only and implemented Everhart's variable stepsize integrator RA15. All close encounters between the family members (within 0.1 AU) were recorded as well. Preliminary results from integrations over 4×105 years are presented here.The statistics of close encounters show pronounced peaks for several members within each family, while for others no significant levels above the background of random encounters or even very low frequencies were found. This indicates a subclustering within the families. Quite a lot of very close (<0.005 AU) mutual encounters are found, which suggest that, at least for the larger members in a family, the mutual gravitational interactions could be of some importance for the real orbital evolutions.The encounter statistics between the Dora and Oppavia family members suggest a possible interrelationship between this two groups.  相似文献   
996.
We report the results of an experiment that produced a residue which closely matches the hydrocarbon component of the Murchison carbonaceous chondrite. This experiment suggests that the parent material of the meteoritic component originated as polycyclic aromatic hydrocarbon species in carbon stars during their later stages of evolution. The experiments also indicate that the pathway from those formation sites to eventual incorporation into the meteorite parent body involved hydrogenation in a plasma in the solar nebula or in H II regions prior to the solar nebula. This model is consistent with what is known about the meteoritic hydrocarbon component including deuterium abundance, the observation of cosmic infrared emission bands best attributed to polycyclic aromatic hydrocarbon molecules, and the inherent stability of these molecules that allows their formation in stars and subsequent survival in the interstellar medium.  相似文献   
997.
From the gyroresonance brightness temperature spectrum of a sunspot, one can determine the magnetic field strength by using the property that microwave brightness is limited above a frequency given by an integer-multiple of the gyrofrequency. In this paper, we use this idea to find the radial distribution of magnetic field at the coronal base of a sunspot in the active region, NOAA 4741. The gyroresonance brightness temperature spectra of this sunspot are obtained from multi-frequency interferometric observations made at the Owens Valley Radio Observatory at 24 frequencies in the range of 4.0–12.4 GHz with spatial resolution 2.2″–6.8″. The main results of present study are summarized as follows: first, by comparison of the coronal magnetic flux deduced from our microwave observation with the photospheric magnetic flux measured by KPNO magnetograms, we show that theo-mode emission must arise predominantly from the second harmonic of the gyrofrequency, while thex-mode arises from the third harmonic. Second, the radial distribution of magnetic fieldsB(r) at the coronal base of this spot (say, 2000–4000 km above the photosphere) can be adequately fitted by $$B(r) = 1420(1 \pm 0.080)\exp \left[ { - \left( {\frac{r}{{11.05''(1 \pm 0.014)}}} \right)^2 } \right]G,$$ wherer is the radial distance from the spot center at coronal base. Third, it is found that coronal magnetic fields originate mostly from the photospheric umbral region. Fourth, although the derived vertical variation of magnetic fields can be approximated roughly by a dipole model with dipole moment 1.6 × 1030 erg G?1 buried at 11000 km below the photosphere, the radial field distribution at coronal heights is found to be more confined than predicted by the dipole model.  相似文献   
998.
Parameterizations of single nucleon removal from the electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the theoretical models developed by Baur, Bertulani, Benesh, Cook, Vary, Norbury, and Townsend. They should be very suitable for use in cosmic-ray propagation through interstellar space, Earth's atmosphere, lunar samples, meteorites, spacecraft walls, and lunar and martian habitats.  相似文献   
999.
A brief review of erenkov radiation within the upper atmospheric plasma has been presented. Different attempts in this context are systematically discussed. The results of analysis about the nature and characteristics of VLF hisses in terms of incoherent erenkov radiation are given in a concise manner. The occurrence of resonance cone has also been reported.  相似文献   
1000.
McKay CP  Pollack JB  Lunine JI  Courtin R 《Icarus》1993,102(1):88-98
We have developed a coupled atmosphere and ocean model of Titan's surface. The atmospheric model is a 1-D spectrally-resolved radiative-convective model. The ocean thermodynamics are based upon solution theory. The ocean, initially composed of CH4, becomes progressively enriched in ethane over time. The partial pressures of N2 and CH4 in the atmosphere are dependent on the ocean temperature and composition. We find that the resulting system is stable against a runaway greenhouse. Accounting for the decreased solar luminosity, we find that Titan's surface temperature was about 20 K colder 4 Gyr ago. Without an ocean, but only small CH4 lakes, the temperature change is 12 K. In both cases we find that the surface of Titan may have been ice covered about 3 Gyr ago. In the lakes case condensation of N2 provides the ice, whereas in the ocean case the ocean freezes. The dominant factor influencing the evolution of Titan's surface temperature is the change in the solar constant--amplified, if an ocean is present, by the temperature dependence of the solubility of N2. Accretional heating can dramatically alter the surface temperature; a surface thermal flux of 500 erg cm-2 sec-1, representative of small levels of accretional heating, results in a approximately 20 K change in surface temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号