首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   35篇
  国内免费   8篇
测绘学   21篇
大气科学   60篇
地球物理   248篇
地质学   243篇
海洋学   62篇
天文学   74篇
综合类   1篇
自然地理   53篇
  2024年   2篇
  2023年   6篇
  2021年   18篇
  2020年   10篇
  2019年   14篇
  2018年   31篇
  2017年   23篇
  2016年   22篇
  2015年   24篇
  2014年   29篇
  2013年   49篇
  2012年   32篇
  2011年   36篇
  2010年   48篇
  2009年   40篇
  2008年   40篇
  2007年   41篇
  2006年   28篇
  2005年   30篇
  2004年   30篇
  2003年   32篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
排序方式: 共有762条查询结果,搜索用时 15 毫秒
21.
22.
Abstract

Uptake rates of ammonium (NH4 + ), nitrate (NO3 ? ), and urea by three subgroups of phytoplankton (< 200, < 20, < 2 μm) off Westland, were measured using 15 N tracer techniques in midwinter 1988, after a recent upwelling. For all size fractions at surface irradiance (I100), nitrogen (N) was taken up primarily as NO3 ?. This accounted for 67–85% of total N uptake (SρN), whereas at 40 and 7% of surface irradiance, the regenerated N (NH4 + ) and urea) made up 31–72% of SρN. Depth profile experiments for all three size components showed that uptake of NO3 ? was most light‐sensitive, followed by that of NH4 + and urea. The irradiance and nutrient availability plot indicated that light was substantially more important than the nutrient concentrations in controlling the assimilation of N by microplankton (20–200 μm). Nano‐ (2–20 μm) and picoplankton (< 2 μm) however, were not as sensitive to either light or nutrient concentrations. High winds and the resulting deep mixing, combined with offshore and alongshore advection in the midwinter, were suggested to be the major cause of the low biomass and N productivity.  相似文献   
23.
A hydrodynamic model of the Bay of Toulon has been developed for use as a post-accident radionuclide dispersion simulation tool. Located in a Mediterranean urban area, the Bay of Toulon is separated into two basins by a 1.4-km long seawall. The Little Bay is semi-enclosed and connected to the Large Bay by a fairway channel. This channel is the site of significant water mass exchange as a result of both wind-driven currents and bathymetry. It is therefore a focal point for marine contamination. As part of the model calibration and validation process, the first step consisted of studying the water mass exchange between the two basins. An Acoustic Doppler Current Profiler was moored in the channel for 1 year. The present study analyses in situ data to determine the current intensity and direction, and also to better understand the vertical current profile, which is highly correlated with meteorological forcing. Comparisons of model-generated and measured data are presented, and various atmospheric forcing datasets are used to enhance computed results. It appears that accurate meteorological forcing data is needed to enhance the accuracy of the hydrodynamic model. This channel is an important location for water mass renewal in the Bay of Toulon, and model results are used to quantify these exchanges. The mean calculated annual water exchange time is approximately 3.4 days. However, this duration is strongly wind dependent and shortens during windy winter months. It ranges from 1.5 days during strong wind periods to 7.5 days during calm weather. Residence time values calculated through tracer dispersion modelling after release at the back of the Little Bay are found to be comparable to the mean exchange time values, especially for windy conditions.  相似文献   
24.
We describe the time discretization of a three-dimensional baroclinic finite element model for the hydrostatic Boussinesq equations based upon a discontinuous Galerkin finite element method. On one hand, the time marching algorithm is based on an efficient mode splitting. To ensure compatibility between the barotropic and baroclinic modes in the splitting algorithm, we introduce Lagrange multipliers in the discrete formulation. On the other hand, the use of implicit–explicit Runge–Kutta methods enables us to treat stiff linear operators implicitly, while the rest of the nonlinear dynamics is treated explicitly. By way of illustration, the time evolution of the flow over a tall isolated seamount on the sphere is simulated. The seamount height is 90% of the mean sea depth. Vortex shedding and Taylor caps are observed. The simulation compares well with results published by other authors.  相似文献   
25.
26.
27.
Lac Saint-Augustin is an urban lake located on the outskirts of Quebec City, one of North America’s oldest cities. Anthropogenic inputs from land clearing, agriculture, highway development and urbanization in the surrounding catchment have resulted in strong impacts on the limnology of the lake throughout the past three centuries. In recent years, this lake has experienced severe eutrophication, including persistent cyanobacterial blooms. In winter 2011, a sediment core was extracted from the deepest area of the lake. A detailed paleopigment analysis was used to assess eutrophication processes in the lake and to determine the timing and appearance of cyanobacterial blooms and their subsequent variability. Extracted chlorophyll a, its degradation products and 11 carotenoid pigments were identified and quantified via reverse-phase high performance liquid chromatography to examine relative changes in the phytoplankton. The results revealed large variations in the phytoplankton community structure of Lac Saint-Augustin over the past 356 years. Chlorophyll a concentrations per unit organic matter (OM) increased significantly from the base of the core to present day, rising more than 15-fold from 18.4 µg (g OM)?1 at the base of the core to 287 µg (g OM)?1 in the most recent strata. Biostratigraphical analysis revealed three major periods of enrichment, with episodes of cyanobacterial abundance from the 1890s onwards. The greatest changes occurred in the most recent period (from the 1960s to the present) relative to earlier periods, with pigment increases for all phytoplankton groups. The cyanobacterial pigments canthaxanthin, echinenone and zeaxanthin (also a marker for green algae) showed concentrations in the surface sediments that were significantly above values at the bottom of the core, and these differences were large, even giving consideration to the lesser pigment degradation near the surface. Overall, the results indicate that cyanobacterial blooms are not a recent feature of Lac Saint-Augustin but began to occur soon after catchment modification 150 years ago. The pigment records also imply that cyanobacterial and associated algal populations have risen to unprecedented levels over the last few decades of ongoing development of the Lac Saint-Augustin catchment. This study highlights the utility of multiple pigment analysis of lake sediments for identifying the timing and magnitude of anthropogenic impacts.  相似文献   
28.
Sediment aggregates (“sedimentary pellets”) within the sedimentary record of Lake A (83°00′ N, 75°30′ W), Ellesmere Island, Canada, are used to construct a 1000 year proxy record of ice-cover extent and dynamics on this perennially ice-covered, High Arctic lake. These pellets are interpreted to form during fall or early winter when littoral sediment adheres to ice forming around the lake’s periphery or during summer through the development of anchor ice. The sediment likely collects in ice interstices and is concentrated in the upper ice layers through summer surface ice melt and winter basal ice growth. The pellets remain frozen in the ice until a summer or series of summers with reduced ice cover allows for their deposition across the lake basin. Sedimentary pellet frequency within multiple sediment cores is used to develop a chronology of ice-cover fluctuations. This proxy ice-cover record is largely corroborated by a record of unusual sedimentation in Lake A involving iron-rich, dark-orange to red laminae overlying more diffuse laminae with a lighter hue. This sediment sequence is hypothesized to represent years with reduced ice cover through increased chemocline ventilation and iron deposition. During the past millennium, the most notable period of inferred reduced ice cover is ca. 1891 AD to present. Another period of ice cover mobility is suggested ca. 1582–1774 AD, while persistent ice cover is inferred during the 1800s and prior to 1582 AD. The proxy ice-cover record corresponds well with most regional melt-season proxy temperature and paleoecological records, especially during the 1800s and 1900s.
Jessica D. TomkinsEmail:
  相似文献   
29.
Rock fall hazard zoning is a challenging yet necessary task to be accomplished for planning an appropriate land use in mountainous areas. Methodologies currently adopted for elaborating zoning maps do not provide satisfactory results though, due to uncertainties and related assumptions characterising hazard assessment. The new Cadanav methodology, presented in this paper, aims at improving quantitative hazard assessment and zoning at the local scale, by reducing uncertainties mainly related to the technique for combining rock fall intensity and frequency of occurrence. Starting from available information on rock fall failure frequency and trajectory simulation results, the procedure merges in a strict way temporal frequency, probability of reach and energy data and evaluates the hazard degree by means of “hazard curves”. These curves are described at each point of the slope by a series of energy–return period couples representing the hazardous conditions which may possibly affect that location. The new Cadanav methodology is here detailed and compared to its original version. Hazard zoning results are illustrated along two different 2D slope profiles, for linear homogeneous cliff configurations, and according to the Swiss intensity–frequency diagram for rock fall hazard zoning. However, the procedure can be easily used with any other intensity–frequency diagram prescribed in national guidelines and, additionally, extended to problems involving 3D topographies.  相似文献   
30.
ARGO hydrographic profiles, two hydrographic transects and satellite measurements of air–sea exchange parameters were used to characterize the properties and seasonal heat budget variations of the Surface Mixed Layer (SML) south of Africa. The analysis distinguishes the Subtropical domain (STZ) and the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ) and Antarctic Zone (AZ) of the Antarctic Circumpolar Current. While no Subantarctic Mode Water forms in that region, occurrences of deep SML (up to ∼450 m) are observed in the SAZ in anticyclones detached from the Agulhas Current retroflection or Agulhas Return Current. These are present latitudinally throughout the SAZ, but preferentially at longitudes 10–20° E where, according to previous results, the Subtropical Front is interrupted. Likely owing to this exchange window and to transfers at the Subantarctic Front also enhanced by the anticyclones, the SAZ shows a wide range of properties largely encroaching upon those of the neighbouring domains. Heat budget computations in each zone reveal significant meridional changes of regime. While air–sea heat fluxes dictate the heat budget seasonal variability everywhere, heat is mostly brought through lateral geostrophic advection by the Agulhas Current in the STZ, through lateral diffusion in the SAZ and through air–sea fluxes in the PFZ and AZ. The cooling contributions are by Ekman advection everywhere, lateral diffusion in the STZ (also favoured by the ∼10° breach in the Subtropical Front) and geostrophic advection in the SAZ. The latter likely reflects an eastward draining of water warmed through mixing of the subtropical eddies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号