首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29875篇
  免费   415篇
  国内免费   307篇
测绘学   748篇
大气科学   2272篇
地球物理   5810篇
地质学   11064篇
海洋学   2562篇
天文学   6312篇
综合类   70篇
自然地理   1759篇
  2022年   187篇
  2021年   302篇
  2020年   320篇
  2019年   330篇
  2018年   733篇
  2017年   732篇
  2016年   855篇
  2015年   476篇
  2014年   821篇
  2013年   1574篇
  2012年   941篇
  2011年   1236篇
  2010年   1062篇
  2009年   1374篇
  2008年   1190篇
  2007年   1173篇
  2006年   1161篇
  2005年   843篇
  2004年   840篇
  2003年   768篇
  2002年   771篇
  2001年   714篇
  2000年   703篇
  1999年   554篇
  1998年   521篇
  1997年   603篇
  1996年   468篇
  1995年   475篇
  1994年   472篇
  1993年   381篇
  1992年   387篇
  1991年   358篇
  1990年   374篇
  1989年   342篇
  1988年   344篇
  1987年   368篇
  1986年   325篇
  1985年   425篇
  1984年   414篇
  1983年   446篇
  1982年   417篇
  1981年   365篇
  1980年   402篇
  1979年   325篇
  1978年   302篇
  1977年   294篇
  1976年   266篇
  1975年   264篇
  1974年   269篇
  1973年   254篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The dynamics of photoevaporated molecular clouds is determined by the ablative pressure acting on the ionization front. An important step in the understanding of the ensuing motion is to develop the linear stability theory for an initially flat front. Despite the simplifications introduced by linearization, the problem remains quite complex and still draws a lot of attention. The complexity is related to the large number of effects that have to be included in the analysis: acceleration of the front, possible temporal variation of the intensity of the ionizing radiation, the tilt of the radiation flux with respect to the normal to the surface, and partial absorption of the incident radiation in the ablated material. In this paper, we describe a model where all these effects can be taken into account simultaneously, and a relatively simple and universal dispersion relation can be obtained. The proposed phenomenological model may prove to be a helpful tool in assessing the feasibility of the laboratory experiments directed towards scaled modeling of astrophysical phenomena. PACS Numbers: 98.38.Dq, 98.38.Hv, 52.38.Mf, 5257.FG, 52.72.+v  相似文献   
942.
A double discontinuity is a rarely observed compound structure composed of a slow shock layer and an adjoining rotational discontinuity layer in the downstream region. In this paper, we report the observations of a double discontinuity detected by Wind on May 15, 1997. This double discontinuity is found to be the front boundary of a magnetic cloud boundary layer. We strictly identify the shock layer and the rotational discontinuity layer by using the high-resolution plasma and magnetic field data from Wind. The observed jump conditions of the upstream and downstream region of the slow shock layer are in good agreement with the Rankine – Hugoniot relations. The flow speeds in the shock frame U n <V Acos θ Bn on both sides of the slow shock layer. In the upstream region, the slow Mach number M s1=U n1/V s1 is 1.95 (above unity), and in the downstream region, the slow Mach number M s2=U n2/V s2 is 0.31 (below unity). Here V A and V s represent the Alfvén speed and the local slow magnetosonic speed, respectively, and θ Bn is the angle between the direction of the magnetic field and the shock normal. The magnetic cloud boundary layer observed by Wind was also detected by Geotail 48 min later when the spacecraft was located outside the bow shock of the magnetosphere. However, Geotail observations showed that its front boundary was no longer a double discontinuity and the rotational discontinuity layer disappeared, indicating that this double discontinuity was unstable when propagating from Wind to Geotail.  相似文献   
943.
Photometric observations of the variable star TX Oph were performed with CCD photometers during the observing seasons of 1999, 2000, and 2002. Analysis of these observations together with published data has confirmed the mean period of the main variability cycle P = 135d. 2613 over almost 70 years. A secondary cycle with a period of about 10–12 thousand days has also been found.  相似文献   
944.
The effect of the extragalactic magnetic field on the propagation of ultra-high-energy cosmic rays (UHECRs) is investigated. We use the infrared galaxy catalog IRAS PSCz to reconstruct the magnetic field distribution in the Local Universe. The magnetic field induction is considered as a power function of the galactic infrared luminosity density: B = Kρβ. In contrast to some earlier studies in which the exponent β = 2/3 corresponded to the freezing-in condition, the parameters K and β are estimated from the field inductions normalized by the expected maximum inductions (strong field) and minimum inductions (weak field) in galaxy clusters and voids, respectively. Maps of angular deflections of UHECRs are presented for these magnetic field models. We found that the protons with energies E > 4 × 1019 eV are not significantly deflected from their sources in a sphere with a radius of 100 Mpc only in the case of the weak magnetic field model (the deflections are comparable to the errors of modern detectors). The effect of the extragalactic magnetic field on the UHECR spectrum is investigated, with Virgo A and Arp 299 taken as potential sources.  相似文献   
945.
We consider the relationship of electromagnetic radiation in the three most intense flares of solar cycle 23, more specifically, those of October 28, 2003, January 20, 2005, and September 7, 2005, to the acceleration and release of protons into interplanetary space. The impulsive phase of these flares lasted ~ 20 min and consisted of at least three energy release episodes, which differed by their manifestation in the soft (1–8 Å, GOES) and hard (>150 keV, INTEGRAL) X-ray ranges as well as at radio frequencies of 245 MHz and 8.8 GHz. The protons and electrons were accelerated in each episode, but with a different efficiency; the relativistic protons were accelerated only after 5–6min of impulsive-phase development after the onset of a coronal mass ejection. It is at this time that maximum hard X-ray fluxes were observed in the September 7, 2005 event, which exceeded severalfold those for the other two flares considered. We associate the record fluxes of protons with energies > 200MeV observed in the heliosphere in the September 7, 2005 event with the dynamics of the impulsive phase. The extreme intensities of the microwave emission in the October 28, 2003 and January 20, 2005 events were probably attributable to the high-energy electron trapping conditions and did not reflect the acceleration process.  相似文献   
946.
In this paper exact solutions of the five-dimensional vacuum cosmological field equations based on Lyra geometry are obtained. Further it is shown that neither dust distribution nor perfect fluid distributions survive for the model. Some properties of the vacuum model are also discussed.  相似文献   
947.
948.
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号