首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   654篇
  免费   25篇
  国内免费   4篇
测绘学   16篇
大气科学   55篇
地球物理   174篇
地质学   233篇
海洋学   34篇
天文学   136篇
综合类   1篇
自然地理   34篇
  2021年   5篇
  2018年   18篇
  2017年   14篇
  2016年   20篇
  2015年   25篇
  2014年   19篇
  2013年   28篇
  2012年   30篇
  2011年   47篇
  2010年   33篇
  2009年   42篇
  2008年   23篇
  2007年   26篇
  2006年   14篇
  2005年   16篇
  2004年   16篇
  2003年   18篇
  2002年   10篇
  2001年   10篇
  2000年   19篇
  1999年   14篇
  1998年   17篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1994年   5篇
  1993年   10篇
  1992年   10篇
  1991年   6篇
  1990年   10篇
  1989年   7篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1984年   8篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1976年   6篇
  1975年   4篇
  1973年   7篇
  1970年   9篇
  1969年   5篇
  1968年   4篇
  1952年   6篇
  1951年   4篇
  1950年   4篇
  1949年   4篇
排序方式: 共有683条查询结果,搜索用时 46 毫秒
101.
102.
103.
104.
105.
106.
A special kind of magma mixing is extraordinarily well exposed in the Bittersberg subvolcanic complex in the Tertiary volcanic field of the German Westerwald: A trachytic melt has been penetrated by a latitic dyke which has been dispersed within the host magma as small spherical enclaves (globules). Whole rock analyses of the globules show a change in composition that cannot be explained by a simple mechanical mixing between the endmembers. The most evolved globules have a phonolitic composition. Microprobe measurements in the microlithic matrix of the host rock and the guest indicate a diffusive motion of the alkalis from the host into the globules. On the other hand, an opposite trend can be observed for Ca, Mg, Fe and Ti, which are impoverished in the globules. The trace elements and the middle rare earth elements (MREE) has also been involved in the diffusive exchange. The REE-pattern of the most evolved (phonolitic) globules shows a characteristic trough in the area of the MREE which is almost identical to the REE-pattern of many phonolites. The phonolites and the alkali-rich trachytes of the Westerwald show similar globular textures as the Bittersberg volcanics. Therefore, generation of these rocks involving diffusive element exchange during mixing processes in a magma reservoir situated on a deeper crustal level may be possible.  相似文献   
107.
We develop and test a real-time envelope cross-correlation detector for use in seismic response plans to mitigate hazard of induced seismicity. The incoming seismological data are cross-correlated in real-time with a set of previously recorded master events. For robustness against small changes in the earthquake source locations or in the focal mechanisms we cross-correlate the envelopes of the seismograms rather than the seismograms themselves. Two sequenced detection conditions are implemented: After passing a single trace cross-correlation condition, a network cross-correlation is calculated taking amplitude ratios between stations into account. Besides detecting the earthquake and assigning it to the respective reservoir, real-time magnitudes are important for seismic response plans. We estimate the magnitudes of induced microseismicity using the relative amplitudes between master event and detected event. The real-time detector is implemented as a SeisComP3 module. We carry out offline and online performance tests using seismic monitoring data of the Insheim and Landau geothermal power plants (Upper Rhine Graben, Germany), also including blasts from a nearby quarry. The comparison of the automatic real-time catalogue with a manually processed catalogue shows, that with the implemented parameters events are always correctly assigned to the respective reservoir (4 km distance between reservoirs) or the quarry (8 km and 10 km distance, respectively, from the reservoirs). The real-time catalogue achieves a magnitude of completeness around 0.0. Four per cent of the events assigned to the Insheim reservoir and zero per cent of the Landau events are misdetections. All wrong detections are local tectonic events, whereas none are caused by seismic noise.  相似文献   
108.
A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.  相似文献   
109.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
110.
A recent dynamo model for Mercury assumes that the upper part of the planet's fluid core is thermally stably stratified because the temperature gradient at the core–mantle boundary is subadiabatic. Vigorous convection driven by a superadiabatic temperature gradient at the boundary of a growing solid inner core and by the associated release of light constituents takes place in a deep sub-layer and powers a dynamo. These models have been successful at explaining the observed weak global magnetic field at Mercury's surface. They have been based on the concept of codensity, which combines thermal and compositional sources of buoyancy into a single variable by assuming the same diffusivity for both components. Actual diffusivities in planetary cores differ by a large factor. To overcome the limitation of the codensity model, we solve two separate transport equations with different diffusivities in a double diffusive dynamo model for Mercury. When temperature and composition contribute comparable amounts to the buoyancy force, we find significant differences to the codensity model. In the double diffusive case convection penetrates the upper layer with a net stable density stratification in the form of finger convection. Compared to the codensity model, this enhances the poloidal magnetic field in the nominally stable layer and outside the core, where it becomes too strong compared to observation. Intense azimuthal flow in the stable layer generates a strong axisymmetric toroidal field. We find in double diffusive models a surface magnetic field of the observed strength when compositional buoyancy plays an inferior role for driving the dynamo, which is the case when the sulphur concentration in Mercury's core is only a fraction of a percent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号