首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   19篇
  国内免费   4篇
测绘学   15篇
大气科学   54篇
地球物理   156篇
地质学   210篇
海洋学   28篇
天文学   123篇
综合类   1篇
自然地理   31篇
  2021年   5篇
  2020年   4篇
  2018年   17篇
  2017年   13篇
  2016年   17篇
  2015年   26篇
  2014年   18篇
  2013年   23篇
  2012年   27篇
  2011年   43篇
  2010年   31篇
  2009年   34篇
  2008年   22篇
  2007年   24篇
  2006年   13篇
  2005年   16篇
  2004年   13篇
  2003年   18篇
  2002年   10篇
  2001年   9篇
  2000年   16篇
  1999年   13篇
  1998年   12篇
  1997年   10篇
  1996年   5篇
  1995年   9篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   8篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1976年   6篇
  1975年   4篇
  1973年   7篇
  1970年   8篇
  1969年   4篇
  1968年   4篇
  1952年   6篇
  1951年   4篇
  1950年   4篇
  1949年   4篇
排序方式: 共有618条查询结果,搜索用时 0 毫秒
611.
Climate change in California is altering habitat conditions for many species and exacerbating stress from other factors such as alien invasive species, pollution, and habitat fragmentation. However, the current legal and planning framework for species protection does not explicitly take climate change into account. The regulatory framework is primarily reactive, kicking in only after species’ health is gravely threatened. Neither federal nor state regulations require forward-looking, climate-sensitive species or ecosystem protection plans. Habitat planning is poorly funded and often piecemeal. In this context, the wrong lands may be protected, with development allowed to occur in areas that would be most beneficial for species conservation in the future. A more forward-looking approach to habitat conservation is needed, one based on a statewide strategy to identify and protect critical habitat areas, including corridors to enable species migration. The approach would also require development of assessment indicators and assistance strategies not dependent on current habitat structure, and a governance structure to implement regular, periodic updates of management plans in relation to agreed-upon performance indicators. Such a strategy should integrate habitat conservation planning with other state and regional plans and objectives, such as for transportation infrastructure, urban development, and mitigation of climate change.  相似文献   
612.
The Emme Delta is a small glacilacustrine delta, which developed on the southern flank of the Wesergebirge Mountains in NW Germany. Shallow shear‐wave seismic surveys allow a detailed assessment of the structural style of the delta body. Two different fault systems are developed within the delta, both showing syn‐sedimentary activity. The faults have planar to slightly listric geometries and show vertical offsets in a range of 2–15 m. They form small graben and half‐graben systems, which locally show roll‐over structures. The fill of the half‐grabens has a wedge‐shaped geometry, with the greatest sediment thickness close to the fault. The fault system in the upper portion of the Emme Delta is restricted to the delta body and probably gravity induced. In the lower portion of the delta, normal faults occur that originate in the underlying Jurassic basement rocks and penetrate into the delta deposits. The grid of seismic lines shows that the normal faults are trending E–W. This fits to a late Triassic–early Jurassic deformation phase in the Central European Basin System. We hypothese that these faults were reactivated during the Pleistocene by the advancing ice‐sheet, water and sediment loading. Based on the seismic data set, an overall model for the reactivation of the basement fault was developed. The advancing ice‐sheet caused far field extension, which might have reactivated pre‐existing normal faults. Later, the fault activity was enhanced due to sediment and water loading. In addition, high pore pressure due to lake formation might have supported the slip processes along the faults. After glacial unloading and lake drainage, the fault activity stopped.  相似文献   
613.
Within the north‐eastern part of the Palawan Continental Terrane, which forms the south‐western part of the Philippine archipelago, several metamorphic complexes are exposed that are considered to be rifted parts of the Asian margin in South‐East China. The protolith age(s) and correlations of these complexes are contentious. The largest metamorphic complex of the Palawan Continental Terrane comprises the Mindoro Metamorphics. The north‐eastern part of this metamorphic complex has recently been found to be composed of protoliths of Late Carboniferous to Late Permian protolith age. However, meta‐sediments exposed at the westernmost tip and close to the southern boundary of the exposure of the Mindoro Metamorphics contain detrital zircons and with U–Pb ages, determined by LA–ICP–MS, in the range 22–56 Ma. In addition, zircons as young as 112 Ma were found in a sample of the Romblon Metamorphics in Tablas. As the youngest detrital zircons provide an upper age limit for the time of deposition in meta‐sediments, these results suggest that the Mindoro and Romblon Metamorphics comprise protoliths of variable age: Late Carboniferous to Late Permian in NE Mindoro; Eocene or later in NW Mindoro; Miocene at the southern margin of the Mindoro metamorphics; and Cretaceous or later on Tablas. The presence of non‐metamorphic sediments of Late Eocene to Early Oligocene age in Mindoro (Lasala Formation), which are older than the youngest metasediments, suggests that metamorphism of the young meta‐sediments of Mindoro is the result of the collision of the Palawan Continental terrane with the Philippine Mobile Belt in Late Miocene. Similarities of the age spectra of zircons from the Eocene to Miocene metamorphics with the Eocene to Early Miocene Lasala Formation suggest that the protoliths of the young metamorphics may be equivalents of the Lasala Formation or were recycled from the Lasala Formation.  相似文献   
614.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   
615.
We compare the distribution of stars of different spectral types, and hence mean age, within the central SMC and find that the asymmetric structures are almost exclusively composed of young main-sequence stars. Because of the relative lack of older stars in these features and the extremely regular distribution of red giant and clump stars in the SMC central body, we conclude that tides alone are not responsible for the irregular appearance of the central SMC. The dominant physical mechanism in determining the current-day appearance of the SMC must be star formation triggered by a hydrodynamic interaction between gaseous components. These results extend the results of population studies (see Gardiner & Hatzidimitriou) inward in radius and also confirm the suggestion of the spheroidal nature of the central SMC based on kinematic arguments (Dopita et al.; Hardy, Suntzeff, & Azzopardi). Finally, we find no evidence in the underlying older stellar population for a "bar" or "outer arm," again supporting our classification of the central SMC as a spheroidal body with highly irregular recent star formation.  相似文献   
616.
A core, recovered from a water depth of 53 m in Loch Assynt, North-West Scotland, has yielded a 9 m sequence comprising two distinct units, an upper, organic-rich unit (Unit I, ca. 6 m) overlying a sequence of laminated clays, silts and sands (Unit II, ca. 3 m). The upper unit is essentially Holocene in age based upon three bulk AMS radiocarbon dates while a fourth radiocarbon date from Unit II confirms a late-glacial age for that interval and supports a broadly linear age–depth relationship. Distinct variations in the magnetic susceptibility record of the lower unit can be visually correlated to major changes in the Greenland ice core (GISP2), this together with pollen evidence supports the radiocarbon dating suggesting an age of approximately 11,000 to around 17,000 cal. BP for Unit II, with evidence for the Younger Dryas (Loch Lomond) stadial and the Bolling–Allerød climatic phases. Variations in the magnetic susceptibility record of the late-glacial sediments are thought to relate to climatically driven changes in soil cover and erosion rates. The multiproxy record from Loch Assynt indicates relatively continuous, sub-aqueous sedimentation during the last ~17,000 years, providing an approximate age for the initiation of modern Loch Assynt and supporting recent dates of moraine retreat lines in the Loanan Valley from about 14–15 ka BP. Pollen and chironomid sampling provides further insights to the history of this relatively deep water body and compliment existing high-resolution palaeo-precipitation records for the mid to late Holocene interval from speleothem archives within the loch catchment.  相似文献   
617.
618.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号