首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2911篇
  免费   42篇
  国内免费   50篇
测绘学   71篇
大气科学   355篇
地球物理   605篇
地质学   993篇
海洋学   152篇
天文学   678篇
综合类   15篇
自然地理   134篇
  2021年   15篇
  2020年   15篇
  2019年   17篇
  2018年   50篇
  2017年   41篇
  2016年   61篇
  2015年   35篇
  2014年   64篇
  2013年   107篇
  2012年   82篇
  2011年   115篇
  2010年   89篇
  2009年   121篇
  2008年   133篇
  2007年   115篇
  2006年   93篇
  2005年   120篇
  2004年   98篇
  2003年   82篇
  2002年   94篇
  2001年   80篇
  2000年   80篇
  1999年   90篇
  1998年   90篇
  1997年   73篇
  1996年   70篇
  1995年   69篇
  1994年   51篇
  1993年   51篇
  1992年   47篇
  1991年   56篇
  1990年   44篇
  1989年   43篇
  1988年   21篇
  1987年   32篇
  1986年   35篇
  1985年   31篇
  1984年   51篇
  1983年   34篇
  1982年   38篇
  1981年   42篇
  1980年   39篇
  1979年   33篇
  1978年   32篇
  1977年   20篇
  1976年   26篇
  1975年   15篇
  1974年   30篇
  1973年   18篇
  1971年   25篇
排序方式: 共有3003条查询结果,搜索用时 15 毫秒
281.
A sea-breeze event in south-west Western Australia is simulated using the Regional Atmospheric Modelling System (RAMS) version 6.0. The model is evaluated against high resolution soundings as well as station observations and is shown to reproduce the qualitative features of the sea breeze well. Sensitivity tests are carried out to investigate the effects of historical land-cover change and changes in soil moisture on the dynamics of the sea breeze. It is found that land-cover change alone, i.e., a change from wooded grasslands to bare soil, with no change in soil moisture initialisation, does not significantly alter the overall structure of the sea breeze but results in higher surface winds due to the reduced vegetation roughness length, which leads to enhanced surface moisture advection inland. On the other hand, land-cover change in conjunction with increased soil moisture results in a considerably weaker, shallower, and less penetrative sea breeze, and delays its onset and duration. A sea-breeze scaling analysis highlights the impact of increasing soil moisture on reducing the sea-breeze volume flux scale.  相似文献   
282.
Summary The physical coupling between the occurrence of winter heavy precipitation in Europe and the surface large-scale circulation is studied by isolating their coupled modes with a singular value decomposition technique. The leading mode is a clear manifestation of the North Atlantic Oscillation forcing. The second mode reflects the influence of a centre-of-action in the pressure field westward of the British Isles. The Hadley Centre Coupled Model (3rd generation) is skilful in reproducing these two modes and an eastward extension of the North Atlantic Oscillation towards the Mediterranean Basin is projected under two future climatic scenarios. This extension yields an increase in the North Atlantic Oscillation forcing over the occurrence of heavy precipitation in several regions of Southern Europe, which is corroborated by the changes in the coupling of the daily precipitation. A combination of the first six coupled modes of the daily precipitation revealed that its amounts in some parts of Western Europe and the Mediterranean are effectively governed by the large-scale circulation. The model is still reasonably skilful in reproducing this large-scale coupling. The projected modifications, both in the strength and in the patterns of the coupled modes, explain important fractions of the projected changes in variance, which ultimately have implications in the occurrence of heavy precipitation in several European areas. Therefore, the ability of a model in reproducing the large-scale forcing over the daily precipitation is important for the reliability of its projections of the occurrence of heavy precipitation in Europe.  相似文献   
283.
Buoyancy and The Sensible Heat Flux Budget Within Dense Canopies   总被引:1,自引:8,他引:1  
In contrast to atmospheric surface-layer (ASL) turbulence, a linear relationship between turbulent heat fluxes (FT) and vertical gradients of mean air temperature within canopies is frustrated by numerous factors, including local variation in heat sources and sinks and large-scale eddy motion whose signature is often linked with the ejection-sweep cycle. Furthermore, how atmospheric stability modifies such a relationship remains poorly understood, especially in stable canopy flows. To date, no explicit model exists for relating FT to the mean air temperature gradient, buoyancy, and the statistical properties of the ejection-sweep cycle within the canopy volume. Using third-order cumulant expansion methods (CEM) and the heat flux budget equation, a “diagnostic” analytical relationship that links ejections and sweeps and the sensible heat flux for a wide range of atmospheric stability classes is derived. Closure model assumptions that relate scalar dissipation rates with sensible heat flux, and the validity of CEM in linking ejections and sweeps with the triple scalar-velocity correlations, were tested for a mixed hardwood forest in Lavarone, Italy. We showed that when the heat sources (ST) and FT have the same sign (i.e. the canopy is heating and sensible heat flux is positive), sweeps dominate the sensible heat flux. Conversely, if ST and FT are opposite in sign, standard gradient-diffusion closure model predict that ejections must dominate the sensible heat flux.  相似文献   
284.
285.
The economic benefits of a multi-gas approach to climate change mitigation are clear. However, there is still a debate on how to make the trade-off between different greenhouse gases (GHGs). The trade-off debate has mainly centered on the use of Global Warming Potentials (GWPs), governing the trade-off under the Kyoto Protocol, with results showing that the cost-effective valuation of short-lived GHGs, like methane (CH4), should be lower than its current GWP value if the ultimate aim is to stabilize the anthropogenic temperature change. However, contrary to this, there have also been proposals that early mitigation mainly should be targeted on short-lived GHGs. In this paper we analyze the cost-effective trade-off between a short-lived GHG, CH4, and a long-lived GHG, carbon dioxide (CO2), when a temperature target is to be met, taking into consideration the current uncertainty of the climate sensitivity as well as the likelihood that this will be reduced in the future. The analysis is carried out using an integrated climate and economic model (MiMiC) and the results from this model are explored and explained using a simplified analytical economic model. The main finding is that the introduction of uncertainty and learning about the climate sensitivity increases the near-term cost-effective valuation of CH4 relative to CO2. The larger the uncertainty span, the higher the valuation of the short-lived gas. For an uncertainty span of ±1°C around an expected climate sensitivity of 3°C, CH4 is cost-effectively valued 6.8 times as high as CO2 in year 2005. This is almost twice as high as the valuation in a deterministic case, but still significantly lower than its GWP100 value.  相似文献   
286.
The fast Ice Nucleus chamber FINCH   总被引:2,自引:0,他引:2  
We present first results of our new developed Ice Nucleus (IN) counter FINCH from the sixth Cloud and Aerosol Characterization Experiment (CLACE 6) campaign at Jungfraujoch station, 3571 m asl. Measurements were made at the total and the ICE CVI inlet. Laboratory measurements of ice onset temperatures by FINCH are compared to those of the static diffusion chamber FRIDGE (FRankfurt Ice Deposition Freezing Experiment). Within the errors of both new instruments the results compare well to published data.  相似文献   
287.
288.
A new cloud microphysics scheme including a prognostic treatment of cloud ice (PCI) is developed to yield a more physically based representation of the components of the atmospheric moisture budget in the general circulation model ECHAM. The new approach considers cloud water and cloud ice as separate prognostic variables. The precipitation formation scheme for warm clouds distinguishes between maritime and continental clouds by considering the cloud droplet number concentration, in addition to the liquid water content. Based on several observational data sets, the cloud droplet number concentration is derived from the sulfate aerosol mass concentration as given from the sulfur cycle simulated by ECHAM. Results obtained with the new scheme are compared to satellite observations and in situ measurements of cloud physical and radiative properties. In general, the standard model ECHAM4 and also PCI capture the overall features, and the simulated results usually lie within the range of observed uncertainty. As compared to ECHAM4, only slight improvements are achieved with the new scheme. For example, the overestimated liquid water path and total cloud cover over convectively active regions are reduced in PCI. On the other hand, some shortcomings of the standard model such as underestimated shortwave cloud forcing over the extratropical oceans of the respective summer hemisphere are more pronounced in PCI.This paper was presented at the Third International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 4–9 Sept. 1995 under the auspices of the Max Planck Institute for Meteorology, Hamburg. Editor for these papers is L. Dümenil.  相似文献   
289.
The atmospheric response to the evolution of the global sea surface temperatures from 1979 to 1992 is studied using the Max-Planck-Institut 19 level atmospheric general circulation model, ECHAM3 at T 42 resolution. Five separate 14-year integrations are performed and results are presented for each individual realization and for the ensemble-averaged response. The results are compared to a 30-year control integration using a climate monthly mean state of the sea surface temperatures and to analysis data. It is found that the ECHAM3 model, by and large, does reproduce the observed response pattern to El Nino and La Niña. During the El Nino events, the subtropical jet streams in both hemispheres are intensified and displaced equatorward, and there is a tendency towards weak upper easterlies over the equator. The Southern Oscillation is a very stable feature of the integrations and is accurately reproduced in all experiments. The inter-annual variability at middle- and high-latitudes, on the other hand, is strongly dominated by chaotic dynamics, and the tropical SST forcing only modulates the atmospheric circulation. The potential predictability of the model is investigated for six different regions. Signal to noise ratio is large in most parts of the tropical belt, of medium strength in the western hemisphere and generally small over the European area. The ENSO signal is most pronounced during the boreal spring. A particularly strong signal in the precipitation field in the extratropics during spring can be found over the southern United States. Western Canada is normally warmer during the warm ENSO phase, while northern Europe is warmer than normal during the ENSO cold phase. The reason is advection of warm air due to a more intense Pacific low than normal during the warm ENSO phase and a more intense Icelandic low than normal during the cold ENSO phase, respectively.  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号