首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   6篇
  国内免费   5篇
测绘学   1篇
大气科学   33篇
地球物理   76篇
地质学   107篇
海洋学   15篇
天文学   102篇
自然地理   24篇
  2023年   3篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   14篇
  2013年   23篇
  2012年   8篇
  2011年   14篇
  2010年   9篇
  2009年   15篇
  2008年   15篇
  2007年   21篇
  2006年   17篇
  2005年   11篇
  2004年   14篇
  2003年   15篇
  2002年   13篇
  2001年   17篇
  2000年   13篇
  1999年   11篇
  1998年   8篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1971年   3篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
  1953年   1篇
  1952年   1篇
排序方式: 共有358条查询结果,搜索用时 31 毫秒
81.
82.
83.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   
84.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   
85.
Large ensembles of coupled atmosphere–ocean general circulation model (AOGCM) simulations are required to explore modelling uncertainty and make probabilistic predictions of future transient climate change at regional scales. These are not yet computationally feasible so we have developed a technique to emulate the response of such an ensemble by scaling equilibrium patterns of climate change derived from much cheaper “slab” model ensembles in which the atmospheric component of an AOGCM is coupled to a mixed-layer ocean. Climate feedback parameters are diagnosed for each member of a slab model ensemble and used to drive an energy balance model (EBM) to predict the time-dependent response of global surface temperature expected for different combinations of uncertain AOGCM parameters affecting atmospheric, land and sea-ice processes. The EBM projections are then used to scale normalised patterns of change derived for each slab member, and hence emulate the response of the relevant atmospheric model version when coupled to a dynamic ocean, in response to a 1% per annum increase in CO2. The emulated responses are validated by comparison with predictions from a 17 member ensemble of AOGCM simulations, constructed from variants of HadCM3 using the same parameter combinations as 17 members of the slab model ensemble. Cross-validation permits estimation of the spatial and temporal dependence of emulation error, and also allows estimation of a correction field to correct discrepancies between the scaled equilibrium patterns and the transient response, reducing the emulation error. Emulated transient responses and their associated errors are obtained from the slab ensemble for 129 pseudo-HadCM3 versions containing multiple atmospheric parameter perturbations. These are combined to produce regional frequency distributions for the transient response of annual surface temperature change and boreal winter precipitation change. The technique can be extended to any surface climate variable demonstrating a scaleable, approximately linear response to forcing.  相似文献   
86.
Using Remote Sensing to Assess Russian Forest Fire Carbon Emissions   总被引:7,自引:0,他引:7  
Russian boreal forests are subject to frequent wildfires. The resulting combustion of large amounts of biomass not only transforms forest vegetation, but it also creates significant carbon emissions that total, according to some authors, from 35–94 Mt C per year. These carbon emissions from forest fires should be considered an important part of the forest ecosystem carbon balance and a significant influence on atmospheric trace gases. In this paper we discuss a new method to assess forest fire damage. This method is based on using multi-spectral high-resolution satellite images, large-scale aerial photography, and declassified images obtained from the space-borne national security systems. A normalized difference vegetation index (NDVI) difference image was produced from pre- and post-fire satellite images from SPOT/HRVIR and RESURS-O/MSU-E images. A close relationship was found between values of the NDVI difference image and forest damage level. High-resolution satellite data and large-scale aerial-photos were used to calibrate the NDVI-derived forest damage map. The method was used for mapping of forest fire extent and damage and for estimating carbon emissions from burned forest areas.  相似文献   
87.
Summary. The seismic structure has been measured to a depth of about 3 km along a 30 km seismic profile in east central Ireland. This profile is unusual in that it is the S -wave velocity—depth structure that has been measured to a degree of precision more normally associated with P -wave results. One reason for this is that the sources used were quarry blasts which generated strong S -waves and short-period surface waves but rather weak P -waves.
The results show a layer of Carboniferous limestone with shear velocity 2.65 km−1 s overlying a layer with a velocity of 3.06 km s−1. This second layer was interpreted as Lower Palaeozoic strata (Silurian/Ordovician) since this velocity was evident in an inlier seen at the surface at the northern end of the line. A third refraction horizon, shear velocity 3.45 km s−1 and displaying a basinal structure, was also recognized. This may be Cambrian or Precambrian basement.  相似文献   
88.
The Earth System Curator is a National Science Foundation sponsored project developing a metadata formalism for describing the digital resources used in climate simulations. The primary motivating observation of the project is that a simulation/model’s source code plus the configuration parameters required for a model run are a compact representation of the dataset generated when the model is executed. The end goal of the project is a convergence of models and data where both resources are accessed uniformly from a single registry. In this paper we review the current metadata landscape of the climate modeling community, present our work on developing a metadata formalism for describing climate models, and reflect on technical challenges we have faced that require new research in the area of Earth Science Informatics.  相似文献   
89.
90.
Velocity profiles in a salt marsh canopy   总被引:7,自引:0,他引:7  
Flow velocity profiles, measured in aSpartina anglica canopy in a laboratory flume, change with the location of measurement and plant stem density. The shear velocity above the canopy is larger than that within the canopy. The reduction ofu * within the canopy will favor the deposition of cohesive sediment. The reducedu * and flow turbulence within the canopy can enhance particle flocculation and settling velocity. The canopy exerts a strong influence on the concentration, settling velocity of the flocs, and deposition rate of the suspended sediment through effects on bed shear stress and turbulence of flow within the canopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号