首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   11篇
  国内免费   7篇
测绘学   16篇
大气科学   15篇
地球物理   47篇
地质学   116篇
海洋学   11篇
天文学   25篇
综合类   3篇
自然地理   11篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   15篇
  2020年   12篇
  2019年   6篇
  2018年   11篇
  2017年   13篇
  2016年   14篇
  2015年   6篇
  2014年   15篇
  2013年   24篇
  2012年   23篇
  2011年   14篇
  2010年   13篇
  2009年   11篇
  2008年   7篇
  2007年   4篇
  2006年   10篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
171.
Magnetic photo-Fenton catalysts based on spinel CuFe2O4 were successfully prepared by the starch-assisted sol–gel method. Various synthetic conditions such as annealing temperatures (700, 800 and 900 °C) and molar ratios of Cu2+/Fe3+/C6H10O5 in the precursor solution (from 1:2:2 to 1:2:4) were, respectively, used in order to study the influences of annealing temperatures and precursor starch contents on the magnetic and catalytic properties of CuFe2O4 powders. The photo-Fenton catalytic activity was evaluated via the degradation of methylene blue under ultraviolet and visible irradiation with H2C2O4 as a new oxidizing agent. According to the results, when the annealing temperature increased to 800 °C, the spinel CuFe2O4 phase amount was increased, which strongly enhances the photo-Fenton catalytic performance. However, above 800 °C, the catalytic activity was reduced, due to the increase in particle size. The starch content also affected the surface Cu2+ content and the particle size of catalysts. The catalyst prepared at 800 °C with the molar Cu2+/Fe3+/C6H10O5 ratio of 1:2:3 presented the best photo-Fenton performance, owing to its highest surface Cu2+ content. This catalyst also exhibits ferromagnetic properties (saturation magnetization of 25.836 emu/g and coercivity of 1010.23 Oe), which allows them to be easily separated from the solution by a magnet.  相似文献   
172.
Groundwater is an important and readily available source of fresh water in the Mekong-Lancang River Basin. With a rapid population growth and increasing human activities, an increasing number of countries in the Mekong-Lancang River Basin are experiencing depleted and degraded groundwater supplies. In transboundary river basins, such as the Mekong-Lancang River, prioritizing the use of the shared aquifer by one riparian government may affect the opportunities of other riparian governments and lead to potential water conflicts between neighboring countries. To promote the sharing of strategies and information for the sustainable and equitable use of water resources of the shared basin, international collaborative workshops on groundwater resources have been organized for all Mekong-Lancang River countries. These workshops provide an opportunity to communicate and discuss nationally sensitive issues on groundwater by the associated countries, with topics covering multiple aspects of groundwater, such as the groundwater status in the basin, quality issues, water use conflicts, hydrological information gaps, management policies and capacity building for successful water resource management. Consensus has been reached by all countries on the importance of catchment-based groundwater management and the need for close communication among the countries. Strategies for managing transboundary aquifer issues must foster international collaboration based on the regional network, influence national networks and enhance the capacity to building maps and monitoring systems based on associated databases. The sustainability of water resources cannot be achieved without the integrated involvement and contributions by multiple countries and various stakeholders. Therefore, collaborative workshops provide a great opportunity to further our understanding of the hydrologic processes of the Mekong River Basin, share the benefits of the aquifer and provide a strategy and vision for sustainable water resource management in the Mekong-Lancang River countries.  相似文献   
173.
The durability of concrete is determined largely by its deterioration over time which is affected by the environment. Climate change may alter this environment, causing an acceleration of deterioration processes that will affect the safety and serviceability of concrete infrastructure in Australia, U.S., Europe, China and elsewhere. This investigation of concrete deterioration under changing climate in Australia uses Monte-Carlo simulation of results from General Circulation Models (GCMs) and considers high greenhouse gas emission scenarios representing the A1FI schemes of the IPCC. We present the implications of climate change for the durability of concrete structures, in terms of changes in probability of reinforcement corrosion initiation and corrosion induced damage at a given calendar year between 2000 and 2100 across Australia. Since the main driver to increased concrete deterioration is CO2 concentration and temperature, then increases in damage risks observed in Australia are likely to be observed in other concrete infrastructure internationally. The impact of climate change on the deterioration cannot be ignored, but can be addressed by new approaches in design. Existing concrete structures, for which design has not considered the effects of changing climate may deteriorate more rapidly than originally planned.  相似文献   
174.
A sinking of the land surface due to the pumping of groundwater has long been recognized as an environmental issue in the Shiroishi plain of Saga, Japan. Land subsidence can have several negative economic and social implications such as changes in groundwater and surface water flow patterns, restrictions on pumping in land subsidence prone areas, localized flooding, failure of well casings as well as shearing of structures. To minimize such an environmental effect, groundwater management should be considered in this area. In this study, a new integrated numerical model that integrates a three-dimensional numerical groundwater flow model coupled with a one-dimensional soil consolidation model and a groundwater optimization model was developed to simulate groundwater movement, to predict ground settlement and to search for optimal safe yield of groundwater without violating physical, environmental and socio-economic constraints. It is found that groundwater levels in the aquifers greatly vary from season to season in response to the varying climatic and pumping conditions. Consequently, land subsidence has occurred rapidly throughout the area with the Shiroishi plain being the most prone. The predicted optimal safe yield of the pumping amount is about 5 million m3. The study also suggests that pumping with this optimal amount will minimize the rate of land subsidence over the entire area. An erratum to this article can be found at  相似文献   
175.
The Tam Duong karst area in NW Vietnam is among the poorest and remotest regions in the country. The local population largely depends on water from two main karst springs. Due to agricultural activity and untreated domestic wastewaters, the spring water is often microbiologically contaminated. In order to provide a scientific basis for groundwater protection in the area, different field methods have been applied including hydrogeological framework investigations, tracer tests, and hydrochemical and microbiological sampling and analyses. All methods had to be adapted to the conditions of a poor and remote area. These adaptations included, amongst other measures, the use of a portable microbiological water_testing kit and the involvement of the local population in the sampling campaign. The tracer tests showed simple and direct connections between two important swallow holes and the two main springs, and made it possible to determine the linear groundwater flow velocities, which are extremely high (up to 875 m/h). The hydrochemical and microbiological data confirmed the strong impact of the streams sinking into the swallow holes on the spring water quality. Future groundwater source protection strategies should consequently focus on the reduction of polluting activities near the sinking streams and within their catchment areas.  相似文献   
176.
Geoelectrical profiling with multi-electrode systems has become an important tool for monitoring dike embankments bordering rivers. Profiles running perpendicular to the dike axis are affected by the dike topography, with the amplitude of this effect dependent on the surface geometry and the choice of the electrode configuration. Investigations using seven different electrode configurations have shown that some configurations are less sensitive to the topography than others.The topography correction method (TCM) is an important tool for processing data from measurements at river dikes. This method is generally recommended for flank angles steeper than 10°. The topography effect is calculated by two-dimensional finite element modelling. The resulting synthetic data of a homogeneous dike body are used to apply a topographic correction for each measurement.The topographic effect and correction procedure is demonstrated for synthetic dike data and for a data set from a river dike in Thai Binh province (Vietnam). The topography can be ignored for flank angles less than 25° if an averaged Half-Wenner electrode configuration is used. This configuration has proved to be less affected by undulated topography and the focusing effect of averaging the two data sets provides reliable structural information without the need for time-consuming data inversion.  相似文献   
177.
Theoretical and Applied Climatology - We present preliminary analyses of the historical (1986–2005) climate simulations of a ten-member subset of the Coupled Model Inter-comparison Project...  相似文献   
178.
The Na Son deposit is a small‐scale Pb–ZnPb–Zn–Ag deposit in northeast Vietnam and consists of biotite–chlorite schist, reddish altered rocks, quartz veins and syenite. The biotite–chlorite schist is intruded by syenite. Reddish altered rocks occur as an alteration halo between the biotite–allanite‐bearing quartz veins and the biotite–chlorite schist. Allanite occurs in the biotite–allanite‐bearing quartz veins and in the proximal reddish altered rocks. Rare earth element (REE) fluorocarbonate minerals occur along fractures or at rim of allanite crystals. The later horizontal aggregates of sulfide veins and veinlets cut the earlier reddish altered rocks. The earlier Pb–Zn veins consist of a large amount of galena and lesser amounts of sphalerite, pyrite and molybdenite. The later Cu veins cutting the Pb–Zn veins include chalcopyrite and lesser amounts of tetrahedrite and pyrite. The occurrences of two‐phase H2O–CO2 fluid inclusions in quartz from biotite–allanite‐bearing quartz veins and REE‐bearing fluorocarbonate minerals in allanite suggest the presence of CO2 and F in the hydrothermal fluid. The oxygen isotopic ratios of the reddish altered rocks, biotite–chlorite schist, and syenite range from +13.9 to +14.9 ‰, +11.5 to +13.3 ‰, and +10.1 to +11.6 ‰, respectively. Assuming an isotopic equilibrium between quartz (+14.6 to +15.8 ‰) and biotite (+8.6 ‰) in the biotite–allanite‐bearing quartz vein, formation temperature was estimated to be 400°C. At 400°C, δ18O values of the hydrothermal fluid in equilibrium with quartz and biotite range from +10.5 to +11.7 ‰. These δ18O values are consistent with fluid that is derived from metamorphism. Assuming an isotopic equilibrium between galena (+1.5 to +1.7 ‰) and chalcopyrite (+3.4 ‰), the formation temperature was estimated to be approximately 300°C. The formation temperature of the Na Son deposit decreased with the progress of mineralization. Based on the geological data, occurrence of REE‐bearing minerals and oxygen isotopic ratios, the REE mineralization is thought to result from interaction between biotite–chlorite schist and REE‐, CO2‐ and F‐bearing metamorphic fluid at 400°C under a rock‐dominant condition.  相似文献   
179.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   
180.
This paper presents applications of the peaks-over-threshold methodology for both the univariate and the recently introduced bivariate case, combined with a novel bootstrap approach. We compare the proposed bootstrap methods to the more traditional profile likelihood. We have investigated 63 years of the European Climate Assessment daily precipitation data for five Hungarian grid points, first separately for the summer and winter months, then aiming at the detection of possible changes by investigating 20 years moving windows. We show that significant changes can be observed both in the univariate and the bivariate cases, the most recent period being the most dangerous in several cases, as some return values have increased substantially. We illustrate these effects by bivariate coverage regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号