首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   725篇
  免费   9篇
  国内免费   16篇
测绘学   10篇
大气科学   44篇
地球物理   147篇
地质学   261篇
海洋学   66篇
天文学   139篇
自然地理   83篇
  2021年   4篇
  2020年   7篇
  2019年   5篇
  2018年   14篇
  2017年   12篇
  2016年   24篇
  2015年   18篇
  2014年   12篇
  2013年   31篇
  2012年   21篇
  2011年   30篇
  2010年   23篇
  2009年   38篇
  2008年   27篇
  2007年   33篇
  2006年   31篇
  2005年   25篇
  2004年   37篇
  2003年   27篇
  2002年   21篇
  2001年   22篇
  2000年   19篇
  1999年   16篇
  1998年   19篇
  1997年   18篇
  1996年   16篇
  1995年   13篇
  1994年   5篇
  1993年   7篇
  1992年   16篇
  1991年   12篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   9篇
  1984年   13篇
  1983年   12篇
  1982年   8篇
  1981年   8篇
  1980年   11篇
  1979年   5篇
  1978年   6篇
  1977年   8篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
  1972年   3篇
  1964年   2篇
排序方式: 共有750条查询结果,搜索用时 15 毫秒
61.
We report on an objective methodology, referred to as intrinsic sample methodology, for the delineation of exploration target areas or resource areas for assessment. Important features of the methodology include (1) identification of recognition criteria for critical genetic factors, (2) synthesis of new variables from enhanced geodata, (3) estimation of logit probability models, and (4) cutting of estimated logit probabilities to delineate exploration targets or resource areas. The methodology is demonstrated on the Walker Lake quadrangle of Nevada and California.  相似文献   
62.
Large ensembles of coupled atmosphere–ocean general circulation model (AOGCM) simulations are required to explore modelling uncertainty and make probabilistic predictions of future transient climate change at regional scales. These are not yet computationally feasible so we have developed a technique to emulate the response of such an ensemble by scaling equilibrium patterns of climate change derived from much cheaper “slab” model ensembles in which the atmospheric component of an AOGCM is coupled to a mixed-layer ocean. Climate feedback parameters are diagnosed for each member of a slab model ensemble and used to drive an energy balance model (EBM) to predict the time-dependent response of global surface temperature expected for different combinations of uncertain AOGCM parameters affecting atmospheric, land and sea-ice processes. The EBM projections are then used to scale normalised patterns of change derived for each slab member, and hence emulate the response of the relevant atmospheric model version when coupled to a dynamic ocean, in response to a 1% per annum increase in CO2. The emulated responses are validated by comparison with predictions from a 17 member ensemble of AOGCM simulations, constructed from variants of HadCM3 using the same parameter combinations as 17 members of the slab model ensemble. Cross-validation permits estimation of the spatial and temporal dependence of emulation error, and also allows estimation of a correction field to correct discrepancies between the scaled equilibrium patterns and the transient response, reducing the emulation error. Emulated transient responses and their associated errors are obtained from the slab ensemble for 129 pseudo-HadCM3 versions containing multiple atmospheric parameter perturbations. These are combined to produce regional frequency distributions for the transient response of annual surface temperature change and boreal winter precipitation change. The technique can be extended to any surface climate variable demonstrating a scaleable, approximately linear response to forcing.  相似文献   
63.
Photoelectric observations on five consecutive nights yield a period of rotation of 80 ± 2 hr with an amplitude of 0.7 magnitude for 182 Elsa, making it the longest period of rotation known to date. 182 Elsa is classed as an S object with a diameter of 48 km.  相似文献   
64.
A zoned intrusion with a biotite granodiorite core and arfvedsonite granite rim represents the source magma for an albitised granite plug near its eastern margin and radioactive siliceous veins along its western margin. A study of selected REE and trace elements of samples from this complex reveals that the albitised granite plug has at least a tenfold enrichment in Zr, Hf, Nb, Ta, Y, Th, U and Sr, and a greatly enhanced heavy/light REE ratio compared with the peralkaline granite. The siliceous veins have even stronger enrichment of these trace elements, but a heavy/light REE ratio and negative eu anomaly similar to the peralkaline granite. It is suggested that the veins were formed from acidic volatile activity and the plug from a combination of highly fractionated magma and co-existing alkaline volatile phase. The granodiorite core intrudes the peralkaline granite and has similar trace element geochemistry. The peralkaline granite is probably derived from the partial melting of the lower crust in the presence of halide-rich volatiles, and the granodiorite from further partial melting under volatile-free conditions.  相似文献   
65.
Many concepts and interpretations on the formation of the Franciscan mélange have been proposed on the basis of exposures at San Simeon, California. In this paper, we show the distribution of chaotic rocks, their internal structures and textures, and the interrelationship between the chaotic rocks and the surrounding sandstones (turbidites). Mélange components, particularly blueschists, oceanic rocks, including greenstone, pillow lava, bedded chert, limestone, sandstone, and conglomerate, have all been brecciated by retrograde deformation. The Cambria Slab, long interpreted as a trench slope basin, is also strongly deformed by fluidization, brecciation, isoclinal folding, and thrusting, leading us to a new interpretation that turbiditic rocks (including the Cambria Slab) represent trench deposits rather than slope basin sediments. These rocks form an accretionary prism above mélanges that were diapirically emplaced into these rocks first along sinistral-thrust faults, and then along dextral-normal faults. Riedel shear systems are observed in several orders of scale in both stages. Although the exhumation of the blueschist blocks is still controversial, the common extensional fractures and brecciation in most of the blocks in the mélanges and further mixture of various lithologies into one block with mélange muddy matrix indicate that once deeply buried blocks were exhumed from considerable depths to the accretionary prism body, before being diapirically intruded with their host mélange along thrust and normal faults, during which retrograde deformation occurred together with retrograde metamorphism. Recent similar examples of high-pressure rock exhumation have been documented along the Sofugan Tectonic Line in the Izu forearc areas, in the Mineoka belt in the Boso Peninsula, and as part of accretionary prism development in the Nankai and Sagami troughs of Japan. These modern analogues provide actively forming examples of the lithological and deformational features that characterize the Franciscan mélange processes.  相似文献   
66.
Foraging behavior and diet of breeding seabirds may be analysed simultaneously with the combined use of remote sensing devices and stable isotope analysis. Imperial shag, Phalacrocorax atriceps, breeding at Punta León colony, Argentina, were equipped with global positioning system (GPS) loggers to record foraging trips and blood samples were taken after removal of the devices in order to analyse their nitrogen and carbon stable isotope composition in whole blood and plasma. Whole blood was correlated to plasma isotopic composition for each individual (n = 35), linking diet in the short and medium term. Sexes did not differ in isotopic signatures. The maximum distance reached and the total number of dives that individuals made on two consecutive foraging trips were correlated to their plasma nitrogen isotopic signature. Individuals that went further from the colony and dived fewer times presented more positive signatures, indicative of benthic prey consumption (e.g. Raneya brasiliensis). Diet was predominantly benthic with some individuals incorporating pelagic prey (Engraulis anchoita) and even cephalopods (Octopus tehuelchus). Within breeding pairs (n = 9), different combinations of foraging and prey preferences were observed. Estimated trophic levels of these individuals were similar to those of the same species in other colonies further south along the Patagonian coast.  相似文献   
67.
Quantifying strain birefringence halos around inclusions in diamond   总被引:1,自引:0,他引:1  
The pressure and temperature conditions of formation of natural diamond can be estimated by measuring the residual stress that an inclusion remains under within a diamond. Raman spectroscopy has been the most commonly used technique for determining this stress by utilising pressure-sensitive peak shifts in the Raman spectrum of both the inclusion and the diamond host. Here, we present a new approach to measure the residual stress using quantitative analysis of the birefringence induced in the diamond. As the analysis of stress-induced birefringence is very different from that of normal birefringence, an analytical model is developed that relates the spherical inclusion size, R i, host diamond thickness, L, and measured value of birefringence at the edge of the inclusion, \Updelta n(R\texti )\textav \Updelta n(R_{\text{i}} )_{\text{av}} , to the peak value of birefringence that has been encountered; to first order \Updelta n\textpk = (3/4)(L/R\texti )  \Updelta n(R\texti )\textav \Updelta n_{\text{pk}} = (3/4)(L/R_{\text{i}} ) \, \Updelta n(R_{\text{i}} )_{\text{av}} . From this birefringence, the remnant pressure (P i) can be calculated using the photoelastic relationship \Updelta n\textpk = - (3/4)n3 q\textiso P\texti \Updelta n_{\text{pk}} = - (3/4)n^{3} q_{\text{iso}} P_{\text{i}} , where q iso is a piezo-optical coefficient, which can be assumed to be independent of crystallographic orientation, and n is the refractive index of the diamond. This model has been used in combination with quantitative birefringence analysis with a MetriPol system and compared to the results from both Raman point and 2D mapping analysis for a garnet inclusion in a diamond from the Udachnaya mine (Russia) and coesite inclusions in a diamond from the Finsch mine (South Africa). The birefringence model and analysis gave a remnant pressure of 0.53 ± 0.01 GPa for the garnet inclusion, from which a source pressure was calculated as 5.7 GPa at 1,175°C (temperature obtained from IR analysis of the diamond host). The Raman techniques could not be applied quantitatively to this sample to support the birefringence model; they were, however, applied to the largest coesite inclusion in the Finsch sample. The remnant pressure values obtained were 2.5 ± 0.1 GPa (birefringence), 2.5 ± 0.3 GPa (2D Raman map), and 2.5–2.6 GPa (Raman point analysis from all four inclusions). However, although the remnant pressures from the three methods were self-consistent, they led to anomalously low source pressure of 2.9 GPa at 1,150°C (temperature obtained from IR analysis) raising serious concerns about the use of the coesite-in-diamond geobarometer.  相似文献   
68.
The concentrations of suspended matter and particulate Cd, Cu, Pb and Zn were determined for 36 samples collected at 6 stations in the Antarctic Ocean during December, 1970 and January, 1971 using membrane filters. The concentration of suspended matter was determined gravimetrically and trace metal levels were determined using anodic stripping voltammetry. For waters deeper than 100 m the concentration of suspended matter was < 100 μg l?1. Concentrations up to 542 μg l?1 were recorded between surface and 100 m. Individual concentrations of the metals were scattered with depth. Average concentrations of particulate metals were: Cd, 3.5 ng l?1; Cu, 100 ng l?1; Pb, 35 ng l?1; and Zn, 230 ng ;l?1 These measurements represent non-steady state conditions of early Antarctic summer as the ice pack disintegrates and biological activity increases.  相似文献   
69.
The Hawaii-2 Observatory seismic system is currently transmitting high-quality seismic data from the ocean floor in the central NE Pacific Ocean through Hawaii to the IRIS Data Management Center. The system includes broad-band seismic, geophone, acoustic, and ocean current sensors. The seismic sensors are buried about 0.4 m below the ocean floor to improve coupling to the ocean bottom and to reduce noise levels. The system can be remotely calibrated, leveled and locked, and gains can be changed on command from shore. Data are temporarily stored in the seismic package for retransmission as needed to correct for transmission problems and to prevent loss of data. Data generated are valuable for studies of the Earth's structure and the dynamics of earthquakes  相似文献   
70.
The nature and origin of glacial sediments at Wylfa Head are described, and their significance with regard to sedimentary environments during Late Devensian deglaciation of the Irish Sea Basin is discussed. Recent models of deglaciation under glaciomarine conditions are challenged. The Quaternary sequence at Wylfa consists of eroded and glaciotectonically deformed bedrock, locally derived lodgement till, calcareous silt-rich lodgement till containing northern erratics, discontinuous units of orange-brown silty sand of possible aeolian origin, and grey laminated freshwater silts filling a small kettle hole. The till units thicken to the south where the surface is drumlinised. It is concluded that the landforms and deposits result from a warm-based Irish Sea glacier, which moved towards the southwest. Spatial variation in basal water pressure resulted from localised drainage through zones of more heavily jointed bedrock. Rapid glacial erosion occurred in areas where subglacial water pressure was relatively high, while deposition of the resulting basal sediment took place where water pressures were reduced. The glacier also carried basal calcareous silty till onshore, which was deposited by lodgement processes. None of the deposits at Wylfa are interpreted as glaciomarine in origin, and there is no evidence at this site for an isostatically induced marine transgression prior to deglaciation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号