首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   4篇
  国内免费   5篇
测绘学   3篇
大气科学   1篇
地球物理   17篇
地质学   39篇
海洋学   6篇
天文学   8篇
综合类   1篇
自然地理   10篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   9篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
51.
The in situ redox potential (Eh) in anoxic groundwater with high methane and iron contents (approximately 12.3 and 28.4 mg/L, respectively) was potentiometrically measured to identify the processes that control Eh. The measured Eh ranged from −213 to −187 mV; it had an inverse correlation with the concentration of methane and no correlation with that of iron. The saturation indices indicate that goethite and amorphous FeS were nearly at solubility equilibrium. A comparison of the measured Eh with those calculated for the particular redox pairs indicates that either Fe2+/FeOOH or CH4/CO2, but not sulfur redox pairs, controlled the measured Eh. The inverse relationship between measured Eh and methane concentration suggests possible control of the redox conditions by the CH4/CO2 redox pair. Furthermore, the equilibrium solubility state of goethite, which has higher crystallinity and lower solubility than Fe(OH)3 indicates that the iron reaction was electrochemically irreversible. This further supports the contribution of the CH4/CO2 pair to controlling the measured Eh of groundwater.  相似文献   
52.
Mg-Al-rich rocks from the Palghat-Cauvery Shear Zone System (PCSZ) within the Gondwana suture zone in southern India contain sodicgedrite as one of the prograde to peak phases, stable during = 900–990°C ultrahigh-temperature metamorphism. Gedrite in these samples is Mg-rich (Mg/[Fe + Mg] = X Mg = 0.69–0.80) and shows wide variation in Na2O content (1.4–2.3 wt.%, NaA = 0.33–0.61 pfu). Gedrite adjacent to kyanite pseudomorph is in part mantled by garnet and cordierite. The gedrite proximal to garnet shows an increase in NaA and AlIV from the core (NaA = 0.40–0.51 pfu, AlIV = 1.6–1.9 pfu) to the rim (NaA = 0.49–0.61 pfu, AlIV = 2.0–2.2 pfu), suggesting the progress of the following dehydration reaction: Ged + Ky → Na-Ged + Grt + Crd + H2O. This reaction suggests that, as the reactants broke down during the prograde stage, the remaining gedrite became enriched in Na to form sodicgedrite, which is regarded as a unique feature of high-grade rocks with Mg-Al-rich and K–Si-poor bulk chemistry. We carried out high-P-T experimental studies on natural sodicgedrite and the results indicate that gedrite and melt are stable phases at 12 kbar and 1,000°C. However, the product gedrite is Na-poor with only <0.13 wt.% Na2O (NaA = 0.015–0.034 pfu). In contrast, the matrix glass contains up to 8.5 wt.% Na2O, suggesting that, with the progressive melting of the starting material, Na was partitioned into the melt rather than gedrite. The results therefore imply that the occurrence of sodicgedrite in the UHT rocks of the PCSZ is probably due to the low H2O activity during peak P-T conditions that restricted extensive partial melting in these rocks, leaving Na partitioned into the solid phase (gedrite). The occurrence of abundant primary CO2-rich fluid inclusions in this rock, which possibly infiltrated along the collisional suture during the final amalgamation of the Gondwana supercontinent, strengthens the inference of low water activity.  相似文献   
53.
We present a model of solar flares triggered by collisions between current loops and plasmoids. We investigate a collision process between a force-free current loop and a plasmoid, by using 3-D resistive MHD code. It is shown that a current system can be induced in the front of a plasmoid, when it approaches a force-free current loop. This secondary current produced in the front of the plasmoid separates from the plasmoid and coalesces to the force-free current loop associated with the magnetic reconnection. The core of the plasmoid stays outside the reconnection region, maintaining high density. The core can be confined by the current system produced around the plasmoid. This collison process between a current loop and a plasmoid may explain the triggering of solar flares observed byYohkoh.  相似文献   
54.
55.
This study is aimed at quantifying the difference in aquifer's response to recharge between some different locations in a fan aquifer and a delta aquifer for a preliminary study of revealing mechanisms of water transport in alluvial aquifer. The aquifer's response to recharge is statistically quantified with the two viewpoints: (1) timing and volume of recharge and (2) time length of aquifer's holding water. For the first point, a statistical model that links precipitation and groundwater level is introduced, and its parameters are identified using correlation analysis. Our results show that the recharge rate at the toe is higher than that at the apex and at the delta. For the second point, the concept of ‘memory effect’ of aquifer is adopted and quantified using the autocorrelation and spectral analyses. Our results show that the memory effect is longer at the toe of fan than at the apex, and thus, a temporary increase of water level has about five times as long‐term influence on subsequent water levels at the toe of the fan as at the apex. This study demonstrates that the statistical analyses and modeling of hydrological data are useful for characterizing aquifer's hydrodynamics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
56.
Temperature, salinity and density structures were observed on Sept. 23 and 24, 1986 at one vertical section across the East China Sea shelf edge by an advanced type of towed vehicle with CTD sensors which was developed by the Japan Marine Science and Technology Center. The vehicle was towed at a speed of 2.5 m s−1 down to 150 m depth and at intervals of 170–500 m width. The observed profile was 50 km long on Sept. 23 and 70 km long on Sept. 24 along the cross-shelf section. An on-ship acoustic Doppler current profiler was simultaneously used to measure current velocities at depths of 20, 50 and 100 m.Interesting features were noticed. Firstly, there was a vertical displacement of pycnoclines at the lower edge of the surface mixed layer accompanied by vertical inversion of the salinity and temperature in the vicinity of the shelf edge. Pycnoclines were displaced upward by 12 m toward the outer edge on Sept. 23 and by 20 m on Sept. 24. On Sept. 23, the salinity inversion took place in a layer 20 m thick and 8 km wide, whereas the temperature inversion took place in a layer 8 m thick and 1.5 km wide. These vertical inversions were probably generated by vertical shear of tidal currents which was observed by the Doppler current profiler. These results throw light on understanding the vertical mixing process of stratified water on the continental shelf edge. Secondly, an intrusion of the shelf water into the Kuroshio water was observed along pycnoclines below the surface mixed layer 60 to 70 m deep in the Kuroshio region outer break. The measurement was successful in showing a horizontal mixing process of the shelf water and the Kuroshio water which could not be found out by standard CTD observations.  相似文献   
57.
A new occurrence of the rare corundum + quartz assemblage and magnesian staurolite has been found in a gedrite–garnet rock from the Central Zone of the Neoarchean Limpopo Belt in Zimbabwe. Poikiloblastic garnet in the sample contains numerous inclusions of corundum + quartz ± sillimanite, magnesian staurolite + sapphirine ± orthopyroxene, and sapphirine + sillimanite assemblages, as well as monophase inclusions. Corundum, often containing subhedral to rounded quartz, occurs as subhedral to euhedral inclusions in the garnet. Quartz and corundum occur in direct grain contact with no evidence of a reaction texture. The textures and Fe–Mg ratios of staurolite inclusions and the host garnet suggest a prograde dehydration reaction of St → Grt + Crn + Qtz + H2O to give the corundum + quartz assemblage. Peak conditions of 890–930 °C at 9–10 kbar are obtained from orthopyroxene + sapphirine and garnet + staurolite assemblages. A clockwise PT path is inferred, with peak conditions being followed by retrograde conditions of 4–6 kbar and 500–570 °C. The presence of unusually magnesian staurolite (Mg / [Fe + Mg] = 0.47–0.53) and corundum + garnet assemblages provides evidence for early high-pressure metamorphism in the Central Zone, possibly close to eclogite facies. The prograde high-pressure event followed by high- to ultrahigh-temperature metamorphism and rapid uplifting of the Limpopo Belt could have occurred as a result of Neoarchean collisional orogeny involving the Zimbabwe and Kaapvaal Cratons.  相似文献   
58.
We carried out thermomagnetic susceptibility analyses of fault rocks from core samples from Hole B of the Taiwan Chelungpu Fault Drilling Project (TCDP) to investigate the cause of high magnetic susceptibilities in the fault core. Test samples were thermally and mechanically treated by heating to different maximum temperatures of up to 900 °C and by high-velocity frictional tests before magnetic analyses. Thermomagnetic susceptibility analyses of natural fault rocks revealed that magnetization increased at maximum heating temperatures above 400 °C in the heating cycle, and showed three step increases, at 600 to 550 °C and at 300 °C during the cooling cycle. These behaviors are consistent with the presence of pyrite, siderite and chlorite, suggesting that TCDP gouge originally included these minerals, which contributed to the generation the magnetic susceptibility by thermomechanical reactions. The change in magnetic susceptibility due to heating of siderite was 20 times that obtained by heating pyrite and chlorite, so that only a small fraction of siderite decomposition is enough to cause the slight increase of the susceptibility observed in the fault core. Color measurement results indicate that thermal decomposition by frictional heating took place under low-oxygen conditions at depth, which prevented the minerals from oxidizing to reddish hematite. This finding supports the inference that a mechanically driven chemical reaction partly accounts for the high magnetic susceptibility. A kinetic model analysis confirmed that frictional heating can cause thermal decomposition of siderite and pyrite. Our results show that decomposition of pyrite to pyrrhotite, siderite and, to some extent, chlorite to magnetite is the probable mechanism explaining the magnetic anomaly within the Chelungpu fault zone.  相似文献   
59.
Migration properties characterized by physico-chemical factors such as distribution coefficient (Kd) and diffusion coefficient (De) are of great concern in performance assessment of high-level radioactive waste disposal in a deep geologic environment. These coefficients are normally obtained with different sample geometries using conventional methods, i.e., crushed samples by the batch sorption method for Kd determination and block samples by the through-diffusion method for De. A size dependence on both Kd and De has been reported and an additional correction due to size difference is required to maintain consistency of the data set. A fast method was developed, hereafter referred to as the micro-channel method, to determine both the sorption coefficient (Rd) and De using non-crushed rock sample by adopting the micro-reactor technique. In this method, a radionuclide solution is injected into a micro-channel (20 mm length, 4 mm width, 160 μm depth), which is in contact with a plate-shaped rock sample. A part of the injected radionuclide can diffuse into the rock matrix and/or adsorb on the rock surface and this results in an inlet-outlet concentration difference. A breakthrough curve is easily obtained with a short observation period because the injection amount is extremely small and is comparable to that escaping by diffusion into the matrix. The breakthrough curve is analyzed by a two-dimensional diffusion-advection equation to evaluate Rd and De.In the present study, tritiated water (specific activity, 1.2 × 104 Bq/mL; pH, 6) was injected into the micro-channel, and the breakthrough curve of 3H obtained. A series of experiments was carried out by changing the flow rate of the tritiated water (2.6 × 10−5–7.7 × 10−4 m/s). Rock samples were biotite granite from the Makabe area, Japan. The diffusion coefficient evaluated by least squares fitting to the numerical solutions (De = 1.5 × 10−11 m2/s) agreed well with that obtained by the through-diffusion method (1.3 × 10−11 m2/s). The breakthrough curve of Cs ([Cs] = 1.0 × 10−7 mol/L, pH 6) labeled with 134Cs (specific activity adjusted to 4.9 × 10Bq/mL) was also obtained. A nearly constant Rd value (5.5 × 10−2 m3/kg) was found when the flow rate was less than 2.5 × 10−4 m/s. This implied that the sorption equilibrium is reached and Kd is obtained by the present method. This value was almost identical to Kd obtained by the batch sorption method (5.0 × 10−2 m3/kg), but the testing period was very different; 1 day and 7 days, respectively. It is concluded that application of the micro-channel method provided advantages when compared with the conventional methods.  相似文献   
60.
http://www.sciencedirect.com/science/article/pii/S1674987112000643   总被引:1,自引:1,他引:1  
Incipient charnockites represent granulite formation on a mesoscopic scale and have received considerable attention in understanding fluid processes in the deep crust.Here we report new petrological data from an incipient charnockite locality at Rajapalaiyam in the Madurai Block,southern India,and discuss the petrogenesis based on mineral phase equilibrium modeling and pseudosection analysis. Rajapalaiyam is a key locality in southern India from where diagnostic mineral assemblages for ultrahigh-temperature(UHT) metamorphism have been reported.Proximal to the UHT rocks are patches and lenses of charnockite(Kfs + Qtz + Pl + Bt + Opx + Grt + Ilm) occurring within Opx-free Grt-Bt gneiss(Kfs + Pl + Qtz + Bt + Grt + Ilm + Mt) which we report in this study.The application of mineral equilibrium modeling on the charnockitic assemblage in NCKFMASHTO system yields a p-T range of~820℃and~9 kbar.Modeling of the charnockite assemblage in the MnNCKFMASHTO system indicates a slight shift of the equilibrium condition toward lower p and T(~760℃and~7.5 kbar). which is consistent with the results obtained from geothermobarometry(710—760℃,6.7—7.5 kbar). but significantly lower than the peak temperatures(>1000℃) recorded from the UHT rocks in this locality,suggesting that charnockitization is a post-peak event.The modeling of T versus molar H2O content in the rock(M(H2O)) demonstrates that the Opx-bearing assemblage in charnockite and Opxfree assemblage in Grt-Bt gneiss are both stable at M(H2O) = 0.3 mol%-0.6 mol%.and there is no significant difference in water activity between the two domains.Our finding is in contrast to the previous petrogenetic model of incipient charnockite formation which envisages lowering of water activity and stabilization of orthopyroxene through breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid.T-XFe3+(= Fe2O3/(FeO + Fe2O3) in mole) pseudosections suggest that the oxidation condition of the rocks played a major role on the stability of orthopyroxene:Opx is stable at XFe3+ <0.03 in charnockite.while Opx-free assemblage in Grt-Bt gneiss is stabilized at XFe3+ >0.12.Such low oxygen fugacity conditions of XFe3+ <0.03 in the charnockite compared to Grt-Bt gneiss might be related to the infiltration of a reduced fluid(e.g.,H2O + CH4) during the retrograde stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号