首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   11篇
  国内免费   1篇
测绘学   13篇
大气科学   28篇
地球物理   132篇
地质学   87篇
海洋学   28篇
天文学   38篇
自然地理   19篇
  2022年   1篇
  2021年   7篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   8篇
  2015年   5篇
  2014年   18篇
  2013年   17篇
  2012年   12篇
  2011年   23篇
  2010年   25篇
  2009年   30篇
  2008年   14篇
  2007年   15篇
  2006年   13篇
  2005年   21篇
  2004年   5篇
  2003年   10篇
  2002年   10篇
  2001年   8篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
281.
Correctly representing weather is critical to hydrological modelling, but scarce or poor quality observations can often compromise model accuracy. Reanalysis datasets may help to address this basic challenge. The Climate Forecast System Reanalysis (CFSR) dataset provides continuous, globally available records, and CFSR data have produced satisfactory hydrological model performance in some temperate and monsoonal locations. However, the use of CFSR for hydrological modelling in tropical and semi‐tropical basins has not been adequately evaluated. Taking advantage of exceptionally high rainfall station density in the catchments of the Rio Grande de Loiza above San Juan, Puerto Rico, we compared model performance based on CFSR records with that based on publicly available weather stations in the Global Historical Climate Network (GHCN, n = 21) and on a dataset of rainfall records maintained by the United States Geological Survey Caribbean Water Science Center (USGS, n = 24). For an implementation of the Soil and Water Assessment Tool (SWAT) with subbasins defined at 11 streamflow gages, uncalibrated measures of Nash–Sutcliffe efficiency (NSE) were >0 at 8 of 11 gages using USGS precipitation data for daily simulations over the period 1998–2012, but were <0 using GHCN weather station records (8 of 11) and CFSR reanalysis data (9 of 11). Autocalibration of individual SWAT models for each of the 11 basins against each of the available weather datasets yielded NSE values > 0 using all precipitation inputs, including CFSR. However, the ground weather station closest to the geographic basin centre produced the highest NSE values in only 5 of 11 cases. The spatially interpolated CFSR data performed as well or better than single ground observations made further than 20–30 km, and sometimes better than individual weather stations <10 km from the basin centroid. In addition to demonstrating the need to evaluate available weather inputs, this research reinforces the value of CFSR data as a means to supplement ground records and consistently determine a baseline for hydrologic model performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
282.
A growing number of state and local governments and petroleum-related companies require the use of release detection systems for underground petroleum storage tanks. This has resulted in a confusing array of commercially available petroleum product detection devices, many of which have not been extensively field-tested. These systems, which are installed in ground water observation wells, vapor wells or U-tubes, include hydrocarbon-detecting paste, bailers, interface probes, electrical resistivity sensors, thermal-conductivity sensors, hydrocarbon-soluble devices, hydrocarbon-permeable materials and vapor detectors. This paper describes the available state-of-the-art technology for leak detection and the application for which each system is best suited.  相似文献   
283.
284.
 The 3.9- to 2.9-Ma Waianae Volcano is the older of two volcanoes making up the island of Oahu, Hawaii. Exposed on the volcanic edifice are tholeiitic shield lavas overlain by transitional and alkalic postshield lavas. The postshield "alkalic cap" consists of aphyric hawaiite of the Palehua Member of the Waianae Volcanics, overlain unconformably by a small volume of alkalic basalt of the Kolekole Volcanics. Kolekole Volcanics mantle erosional topography, including the uppermost slopes of the great Lualualei Valley on the lee side of the Waianae Range. Twenty new K–Ar dates, combined with magnetic polarity data and geologic relationships, constrain the ages of lavas of the Palehua member to 3.06–2.98 Ma and lavas of the Kolekole Volcanics to 2.97–2.90 Ma. The geochemical data and the nearly contemporaneous ages suggest that the Kolekole Volcanics do not represent a completely independent or separate volcanic event from earlier postshield activity; thus, the Kolekole Volcanics are reduced in rank, becoming the Kolekole Member of the Waianae Volcanics. Magmas of the Palehua and Kolekole Members have similar incompatible element ratios, and both suites show evidence for early crystallization of clinopyroxene consistent with evolution at high pressures below the edifice. However, lavas of the Kolekole Member are less fractionated and appear to have evolved at greater depths than the earlier Palehua hawaiites. Postshield primary magma compositions of the Palehua and Kolekole Members are consistent with formation by partial melting of mantle material of less than 5–10% relative to Waianae shield lavas. Within the section of Palehua Member lavas, an increase with respect to time of highly incompatible to moderately incompatible element ratios is consistent with a further decrease in partial melting by approximately 1–2%. This trend is reversed with the onset of eruption of Kolekole Member lavas, where an increase in extent of partial melting is indicated. The relatively short time interval between the eruption of Palehua and Kolekole Member lavas appears to date the initial formation of Lualualei Valley, which was accompanied by a marked change in magmatic conditions. We speculate that the mass-wasting event separating lavas of the Palehua and Kolekole Members may be related to the formation of a large submarine landslide west and southwest of Waianae Volcano. Enhanced decompression melting associated with removal of the equivalent volume of this landslide deposit from the edifice is more than sufficient to produce the modeled increase of 1–2% in extent of melting between the youngest Palehua magmas and the posterosional magmas of the Kolekole Member. The association between magmatic change and a giant landsliding event suggests that there may be a general relationship between large mass-wasting events and subsequent magmatism in Hawaiian volcano evolution. Received: 1 September 1996 / Accepted: 26 November 1996  相似文献   
285.
Understanding the factors controlling insect emergence from streams has applications to ecological theory regarding cross-boundary flux, along with practical value for monitoring stream function after restoration projects. We hypothesized that stream microhabitat would have effects on emergence that were independent of those mediated by the local stock of benthic macroinvertebrates. We set 50 emergence traps in a third-order stream in northern Minnesota, USA, during two study periods and used structural equation modeling to examine direct and indirect effects of benthic stock and microhabitat features on emergence. Emergence by biomass showed direct positive relationships to substrates of fines and detritus in the first sampling period, and to shallow depth and wood area in the second period. Emergence by abundance had direct positive relationships with benthic stock, CPOM, and fewer macrophytes in the first period, and with benthic stock and periphyton in the second period. Fine substrates may act to concentrate burrowing larvae, whereas CPOM and particularly wood may intercept drifting pre-emergent insects and provide exiting surfaces. Shallow depths may reduce the extent to which resident insects drift downstream (and leave the sample area) while emerging. Periphyton may be an indicator for patches with greater illumination, which itself attracts emergers. Our results suggest emergence is sensitive to environmental conditions at the microhabitat scale, and that stream restoration activities should consider habitat for emerging insects when designing projects.  相似文献   
286.
287.
In order to enable greater accuracy in the determination of the mass discharge of gas and water-gas ratios (WGR) in groundwater from springs, we have developed a field-deployable instrument using commercially available components to independently measure the gas and water mass flow rates in springs with bubbling mixed-phase flow. Collecting and measuring the free gas phase will allow for further compositional analysis that may be useful in improving gas-derived parameters such as recharge temperature and age, as well as quantification of methanogenesis and flux of crustal/mantle gasses. By installing a phase separator at the spring discharge, a thermal mass flow sensor is utilized to measure the gas flow rate (ebullition + flux) generated from a spring. The water flow rate is determined by a standard weir. Field performance of the device was tested on a spring discharging from the Arbuckle-Simpson aquifer near the town of Connerville in south-central Oklahoma, USA.  相似文献   
288.
289.
290.
During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoi tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high-quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow-water equations spanning the entire surface of the sphere. This example is used to elucidate both the po tential benefits of this multiresolution method and the challenges ahead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号