首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   913篇
  免费   38篇
  国内免费   4篇
测绘学   31篇
大气科学   50篇
地球物理   275篇
地质学   233篇
海洋学   133篇
天文学   178篇
综合类   5篇
自然地理   50篇
  2021年   10篇
  2020年   14篇
  2018年   16篇
  2017年   18篇
  2016年   19篇
  2015年   15篇
  2014年   21篇
  2013年   43篇
  2012年   20篇
  2011年   31篇
  2010年   33篇
  2009年   41篇
  2008年   33篇
  2007年   33篇
  2006年   39篇
  2005年   20篇
  2004年   29篇
  2003年   28篇
  2002年   21篇
  2001年   19篇
  2000年   21篇
  1999年   15篇
  1998年   20篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   12篇
  1993年   10篇
  1992年   19篇
  1991年   11篇
  1989年   8篇
  1988年   7篇
  1987年   13篇
  1986年   9篇
  1985年   24篇
  1984年   32篇
  1983年   20篇
  1982年   18篇
  1981年   23篇
  1980年   17篇
  1979年   12篇
  1978年   14篇
  1977年   12篇
  1976年   16篇
  1975年   14篇
  1974年   12篇
  1973年   11篇
  1971年   6篇
  1968年   6篇
  1966年   6篇
排序方式: 共有955条查询结果,搜索用时 29 毫秒
321.
A procedure was developed using aboveground field biomass measurements of Chesapeake Bay submersed aquatic vegetation (SAV), yearly species identification surveys, annual photographic mapping at 1∶24,000 scale, and geographic information system (GIS) analyses to determine the SAV community type, biomass, and area of each mapped SAV bed in the bay and its tidal tributaries for the period of 1985 through 1996. Using species identifications provided through over 10,000 SAV ground survey observations, the 17 most abundant SAV species found in the bay were clustered into four species associations: ZOSTERA, RUPPIA, POTAMOGETON, and FRESHWATER MIXED. Monthly aboveground biomass values were then assigned to each bed or bed section based upon monthly biomass models developed for each community. High salinity communities (ZOSTERA) were found to dominate total bay SAV aboveground biomass during winter, spring, and summer. Lower salinity communities (RUPPIA, POTAMOGETON, and FRESHWATER MIXED) dominated in the fall. In 1996, total bay SAV standing stock was nearly 22,800 metric tons at annual maximum biomass in July encompassing an area of approximately 25,670 hectares. Minimum biomass in December and January of that year was less than 5,000 metric tons. SAV annual maximum biomass increased baywide from lows of less than 15,000 metric tons in 1985 and 1986 to nearly 25,000 metric tons during the 1991 to 1993 period, while area increased from approximately 20,000 to nearly 30,000 hectares during that same period. Year-to-year comparisons of maximum annual community abundance from 1985 to 1996 indicated that regrowth of SAV in the Chesapeake Bay from 1985–1993 occurred principally in the ZOSTERA community, with 85% of the baywide increase in biomass and 71% of the increase in are a occurring in that community. Maximum biomass of FRESHWATER MIXED SAV beds also increased from a low of 3,200 metric tons in 1985 to a high of 6,650 metric tons in 1993, while maximum biomass of both RUPPIA and POTAMOGETON beds fluctuated between 2,450 and 4,600 metric tons and 60 and 600 metric tons, respectively, during that same period with net declines of 7% and 43%, respectively, between 1985 and 1996. During the July period of annual, baywide, maximum SAV biomass, SAV beds in the Chesapeake Bay typically averaged approximately 0.86 metric tons of aboveground dry mass per hectare of bed area.  相似文献   
322.
The United States Southern Ocean Joint Global Ocean Flux Study (JGOFS), also known as AESOPS (Antarctic Environment and Southern Ocean Process Study), focused on two distinct regions. The first was the Ross-Sea continental shelf, where a series of six cruises collected a variety of data from October 1996 through February 1998. The second area was the southwest Pacific sector of the Southern Ocean, spanning the Antarctic Circumpolar Current (ACC) at 170°W. Data were collected within this region during five cruises from September 1996 through March 1998, as well as during selected transits between New Zealand and the Ross Sea. The first results of these cruses are described in this issue. The Ross-Sea investigation extensively sampled the area along 76°30′S to elucidate the temporal patterns and processes that contribute to making this one of the Antarctic's most productive seas. Hydrographic distributions confirm that stratification is initiated early in October within the polynya, generating an environment that is favorable for phytoplankton growth. Significant spatial variations in mixed-layer depths, the timing of the onset of stratification, and the strength of the stratification existed throughout the growing season. Nutrient concentrations reflected phytoplankton uptake, and reached their seasonal minimal in early February. Chlorophyll concentrations were maximal in early January, whereas productivity was maximal in late November, which reflects the temporal uncoupling between growth and biomass accumulation in the region. Independent estimates of biogenic export suggest that majority of the flux occurred in late summer and was strongly uncoupled from phytoplankton growth. The ACC region exhibited seasonal changes that in some cases were greater than those observed in the Ross Sea. Sea ice covered much of the region south of the Polar Front in winter, and retreated rapidly in late spring and early summer. Mixed layers throughout the region shoaled in summer due to surface heating, while the addition of freshwater from melting sea ice enhanced stratification in the Seasonal Ice Zone, creating conditions favorable for phytoplankton growth. For example, silicic acid concentrations decreased from initial values as high as 65 to less than 2 μM within approximately 100 km (from 65.7 to 64.8°S). Fluorescence values, however, showed less than a two-fold variation over the same distance. The vertical flux of carbon in the Polar Front area is substantial, and marked variations in the composition of exported material exited over the region. The results provide a means whereby the controls of phytoplankton growth and organic matter flux and remineralization can be analyzed in great detail. Additional results of the AESOPS project are discussed.  相似文献   
323.
The Atlantic Meridional Transect programme uses the twice-annual passage of the RRS James Clark Ross between the UK and the Falkland Islands, before and after the Antarctic research programme in the Austral Summer (see Aiken, J., & Bale, A. J. (2000). An introduction to the Atlantic Meridional Transect (AMT) Programme. Progress in Oceanography, this issue). This paper examines the scientific rationale for a spatially-extensive time and space series programme and reviews the relevant physical and biological oceanography of the Atlantic Ocean. The main scientific observations from the research programme are reported. These are set in the context of historical and contemporary observations pertinent to the principal objectives of the cruise, notably the satellite remotely sensed observations of ocean properties. The extent to which the programme goals have been realised by the research to date is assessed and discussed. New bio-optical signatures, which can be related to productivity parameters, have been derived. These can be used to interpret remotely sensed observations of ocean colour in terms of productivity and production processes such as the air/sea exchange of biogenic gases, which relate to the issues of climate change and the sustainability of marine ecosystems.  相似文献   
324.
As a common constituent of metamorphic assemblages, rutile provides constraints on the timing and conditions of rock transformation at high resolution. However, very little is known about the links between trace element mobility and rutile microstructures that result from synmetamorphic deformation. To address this issue, here we combine in situ LA-ICP-MS and sensitive high-resolution ion microprobe trace element data with electron back-scatter diffraction microstructural analyses to investigate the links between rutile lattice distortions and Zr and U–Pb systematics. Furthermore, we apply this integrated approach to constrain further the temperature and timing of amphibolite facies metamorphism and deformation in the Bergen Arcs of southwestern Norway. In outcrop, the formation of porphyroblastic rutile in dynamically hydrated leucocratic domains of otherwise rutile-poor statically hydrated amphibolite provides key contextual information on both the ambient conditions of hydration and deformation and the composition of the reactive fluid. Rutile in amphibolite recorded ambient metamorphic temperatures of ~590–730°C during static hydration of the granulitic precursor. By contrast, rutile from leucocratic domains in the directly adjacent shear zone indicates that deformation was accompanied by a localized increase in temperature. These higher temperatures are recorded in strain-free rutile (~600–860°C) and by Zr concentration measurements on low-angle boundaries and shear bands (620–820°C). In addition, we also observe slight depletions of Zr and U along rutile low-angle boundaries relative to strain-free areas in deformed grains from the shear zone. This indicates that crystal–plastic deformation facilitated the compositional re-equilibration of rutile upon cooling to slightly below the peak temperature of deformation. Cessation of deformation at mid-crustal conditions near ~600°C is recorded by late stage growth of small (<150 µm) rutile in the high-strain zones. U–Pb age data obtained from the strain-free and distorted rutile grains cluster in distinct populations of 437.4 ± 2.7 Ma and c. 405–410 Ma, respectively. These different ages are interpreted to reflect the difference in closure for thermally induced Pb diffusion between undeformed and deformed rutile during post-deformation exhumation and cooling. Thus, our results provide a reconstruction of the thermochronological history of the amphibolite facies rocks of the Lindås Nappe and highlight the importance of integration of microstructural data during application of thermometers and geochronometers.  相似文献   
325.
Jason A. Leach  Dan Moore 《水文研究》2017,31(18):3160-3177
Stream temperature controls a number of biological, chemical, and physical processes occurring in aquatic environments. Transient snow cover and advection associated with lateral throughflow inputs can have a dominant influence on stream thermal regimes for headwater catchments in the rain‐on‐snow zone. Most existing stream temperature models lack the ability to properly simulate these processes. We developed and evaluated a conceptual‐parametric catchment‐scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model consists of routines for simulating canopy interception, snow accumulation and melt, hillslope throughflow runoff and temperature, and stream channel energy exchange processes. The model was used to predict discharge and stream temperature for a small forested headwater catchment near Vancouver, Canada, using long‐term (1963–2013) weather data to compute model forcing variables. The model was evaluated against 4 years of observed stream temperature. The model generally predicted daily mean stream temperature accurately (annual RMSE between 0.57 and 1.24 °C) although it overpredicted daily summer stream temperatures by up to 3 °C during extended low streamflow conditions. Model development and testing provided insights on the roles of advection associated with lateral throughflow, channel interception of snow, and surface–subsurface water interactions on stream thermal regimes. This study shows that a relatively simple but process‐based model can provide reasonable stream temperature predictions for forested headwater catchments located in the rain‐on‐snow zone.  相似文献   
326.
Evaporation can be an important control on stream temperature, particularly in summer when it acts to limit daily maximum stream temperature. Evaporation from streams is usually modelled with the use of a wind function that includes empirically derived coefficients. A small number of studies derived wind functions for individual streams; the fitted parameters varied substantially among sites. In this study, stream evaporation and above-stream meteorological conditions (at 0.5 and 1.5 m above the water surface) were measured at nine mountain streams in southwestern British Columbia, Canada, covering a range of stream widths, temperatures, and riparian vegetation. Evaporation was measured on 20 site-days in total, at approximately hourly intervals, using nine floating evaporation pans distributed across the channels. The wind function was fit using mixed-effects models to account for among-stream variability in the parameters. The fixed-effects parameters were tested using leave-one-site-out cross-validation. The model based on 0.5 m measurements provided improved model performance compared to that based on 1.5 m values, with RMSE of 0.0162 and 0.0187 mm h−1, respectively, relative to a mean evaporation rate of 0.06 mm h−1. Inclusion of atmospheric stability and canopy openness as predictors improved model performance when using the 1.5 m meteorological measurements, with minimal improvement when based on 0.5 m measurements. Of the wind functions reported in the literature, two performed reasonably while five others exhibited substantial bias.  相似文献   
327.
Peatlands are globally important long-term sinks of carbon, however there is concern that enhanced peat decomposition and moss moisture stress due to climate change mediated drought will reduce moss productivity making these ecosystems vulnerable to carbon loss and associated long-term degradation. Peatlands are resilient to summer drought moss stress because of negative ecohydrological feedbacks that generally maintain a wet peat surface, but where feedbacks may be contingent on peat depth. We tested this ‘survival of the deepest’ hypothesis by examining water table (WT) position, near-surface moisture content, and soil water tension in peatlands that differ in size, peat depth, and catchment area during a summer drought. All shallow sites (<40 cm depth) lost their WT (i.e., the groundwater well was dry) for considerable time during the drought period. Near-surface soil water tension increased dramatically at shallow sites following WT loss, increasing ~5–7.5× greater at shallow sites compared to deep sites (≥40 cm depth). During a mid-summer drought intensive field survey, we found that 60–67% of plots at shallow sites exceeded a 100 mb tension threshold used to infer moss water stress. Unlike the shallow sites, tension typically did not exceed this 100 mb threshold at the deep sites. Using species dependent water content – chlorophyll fluorescence thresholds and relations between volumetric water content and WT depth, Monte Carlo simulations suggest that moss had nearly twice the likelihood of being stressed at shallow sites (0.38 ± 0.24) compared to deep sites (0.22 ± 0.18). This study provides evidence that mosses in shallow peatland may be particularly vulnerable to warmer and drier climates in the future, but where species composition may play an important role. We argue that a critical ‘threshold’ peat depth specific for different hydrogeological and hydroclimatic regions can be used to assess what peatlands are especially vulnerable to climate change mediated drought.  相似文献   
328.
This study examined if riparian land use (forested vs agricultural) affects hydraulic transport in headwater streams located in an agriculturally fragmented watershed. We identified paired 50‐m reaches (one reach in agricultural land use and the other in forested land use) along three headwater streams in the Upper Sugar Creek Watershed in northeast Ohio, USA (40° 51′42″N, 81° 50′29″W). Using breakthrough curves obtained by Rhodamine WT slug injections and the one‐dimensional transport with inflow and storage model (OTIS), hydraulic transport parameters were obtained for each reach on six different occasions (n = 36). Relative transient storage (AS:A) was similar between both reach types (As: A = 0·3 ± 0·1 for both agricultural and forested reaches). Comparing values of Fmed200 to those in the literature indicates that the effect of transient storage was moderately high in the study streams in the Upper Sugar Creek Watershed. Examining travel times revealed that overall residence time (HRT) and residence time in transient storage (TSTO) were both longer in forested reaches (forested HRT = 19·1 ± 11·5 min and TSTO = 4·0 ± 3·8 min; agricultural HRT = 9·3 ± 5·3 min and TSTO = 1·7 ± 1·4 min). We concluded that the effect of transient storage on solute transport was similar between the forested and agricultural reaches but the forested reaches had a greater potential to retain solutes as a result of longer travel times. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
329.

Background

Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.

Results

Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.

Conclusions

This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.
  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号