首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38048篇
  免费   1127篇
  国内免费   944篇
测绘学   977篇
大气科学   2933篇
地球物理   7822篇
地质学   13899篇
海洋学   3404篇
天文学   8350篇
综合类   241篇
自然地理   2493篇
  2022年   275篇
  2021年   458篇
  2020年   442篇
  2019年   505篇
  2018年   946篇
  2017年   899篇
  2016年   1065篇
  2015年   738篇
  2014年   1049篇
  2013年   1935篇
  2012年   1376篇
  2011年   1829篇
  2010年   1598篇
  2009年   2079篇
  2008年   1748篇
  2007年   1810篇
  2006年   1745篇
  2005年   1251篇
  2004年   1178篇
  2003年   1082篇
  2002年   1026篇
  2001年   862篇
  2000年   850篇
  1999年   683篇
  1998年   724篇
  1997年   702篇
  1996年   581篇
  1995年   571篇
  1994年   488篇
  1993年   428篇
  1992年   425篇
  1991年   389篇
  1990年   466篇
  1989年   380篇
  1988年   360篇
  1987年   441篇
  1986年   345篇
  1985年   436篇
  1984年   536篇
  1983年   461篇
  1982年   455篇
  1981年   407篇
  1980年   421篇
  1979年   368篇
  1978年   352篇
  1977年   341篇
  1976年   315篇
  1975年   300篇
  1974年   313篇
  1973年   344篇
排序方式: 共有10000条查询结果,搜索用时 734 毫秒
931.
Many Precambrian granulite-facies metamorphic complexes contain so-called straight gneisses, which are massive rocks with a clearly pronounced blastomylonitic texture, lineation, and gneissosity. These rocks occur exclusively in high-temperature ductile shear zones, which can develop either during the primary exhumation of rock complexes or during the overprinting by high-temperature dynamometamorphism. The main criterion for distinguishing between these two types of straight gneisses is the configuration of their P-T trajectories, which are recorded in the mineral assemblages in these rocks and their host gneisses. Ductile shear zones developed in Archean granulite gneisses simultaneously with their exhumation, and, hence, their P-T trajectories are segments of decompression and/or isobaric cooling paths. Straight gneisses in Proterozoic polymetamorphic complexes commonly compose high-temperature ductile shear zones overprinted on Archean granulite complexes, and the P-T paths of these rocks are Z-shaped. This means that, at a constant pressure in the middle part of the continental crust, the T min of the older P-T trajectory corresponded to T max of the younger trajectory, and often T maxT min > 100°C. Such ductile shear zones commonly have a strike-slip morphology and can be easily seen in aerial photographs and discerned during structural geological surveying. These zones can overprint older gneisses without any notable thermal effect on the latter. Relations of this type were identified in the granulite complexes of Limpopo in South Africa, Sharyzhalgai in the southwestern Baikal area, and Lapland in the Kola Peninsula. The results of our research propose a solution for the well-known problem of the significant discrepancies between the isotopic ages in high-temperature-high-pressure complexes and the partial or complete distortion of radiogenic isotopic systems under the effect of a newly inflowing metamorphic fluid. The application of geochronologic techniques to these situations is senseless, and only P-T trajectories provide insight into the actual age relations between the discrete tectono-metamorphic stages. It is thus expedient to conduct not only structural studies of metamorphic complexes but also their detailed petrological examination and the calculation of their P-T paths before geochronologic dating.  相似文献   
932.
933.
The results of oxygen-isotope study of the Kokhb-Shnokh (J3) and Vokhci (N1) intrusive complexes and the related Tekhut and Kadzharan Cu-Mo porphyry deposits of different types, Armenia, were used to discuss the relevant problems of rock and ore genesis and their relationships. It was established that the assimilation of parental mantle basaltic melts by crustal, mainly feldspathic material is a decisive factor in the formation of multiple gabbro-granite complexes. Specifics in the composition and crystallization of the hybrid melt causes the enrichment of the residual melt and hydrothermal fluids in Fe and other elements, in particular, Cu and Mo. The ore-bearing solutions are generated over the solidification time of the melt. They are removed by the hydrothermal system of directionally moving solutions, a process that gives way to a convective-circulation hydrothermal system. A change in the spatial position of the hydrothermal solutions during the formation of the deposit supplies them to different sites, creating a seeming discontinuity in ore deposition, which is observed at many deposits. In fact, the supply of the ore-bearing solutions is continuous process. The ore stage is not a time interval with particular ore-bearing solutions but rather a certain physicochemical state of the solutions attained during their interaction with the environment. This process resulted in the simultaneous precipitation of different mineral assemblages and the asynchronous precipitation of the same assemblages. The formation of deposits of various metals related to a common intrusive complex, as changes in the composition of mineral assemblages, is caused by the influence of various geochemical barriers rather than by compositional variations in the initial hydrothermal solutions.  相似文献   
934.
935.
In the mid-1980s, it was concluded based on geochemical study that Th, Sc, La concentrations and ratios Th/Sc, La/Sc and Eu/Eu* did not wary significantly in the post-Archean time. It was impossible to judge about compositional variations of upper crust during the Riphean and Vendian, because data of that time characterized a limited number of samples from the post-Archean basins of Australia, New Zealand, and Antarctic. Considered in this work are variations of Eu/Eu*, LREE/HREE, Th/Sc, and La/Sc ratios in Upper Precambrian fine-grained siliciclastic rock of the Southern Urals western flank (Bashkirian meganticlinorium) and Uchur-Maya region (Uchur-Maya plate and Yudoma-Maya belt). As is established, only the Eu anomaly in the studied siliciclastic rocks is practically identical to this parameter of the average post-Archean shale. Three other parameters plot on the Riphean-Vendian variation curves with positive and negative excursions of diverse magnitude, which do not coincide always in time. It is assumed that these excursions likely mark stages of local geodynamic activity, destruction of pre-Riphean cratons, and progressing recycling of sedimentary material during the Riphean.  相似文献   
936.
Summary In the Kutná Hora Complex, the Běstvina Formation, which is similar to Gf?hl granulite, contains eclogite that has escaped widespread retrograde recrystallization. The eclogite assemblage, garnet + omphacite + quartz + rutile ± plagioclase, yields an estimate for peak metamorphic conditions of 18–20 kbar and 835–935 °C, which is comparable to that determined from felsic granulite, 14–20 kbar and 900–1000 °C. Garnet in eclogite exhibits both prograde and retrograde compositional zoning, from which constraints on thermal history of the Gf?hl terrane can be derived by diffusion modelling. At 900 °C, a garnet grain of 800–1000 μm radius would homogenize in 7.5–11.7 million years, but the existence of compositional gradients on a length scale of 100–200 μm suggests that the duration of peak metamorphism may have been limited to ∼500,000 years. Diffusion modelling of retrograde zoning in garnet yields a cooling rate of 150–100 °C/m.y. for a radius of 800–1000 μm and initial temperature of 900 °C. The relatively brief duration of high-pressure/high-temperature metamorphism and rapid cooling and exhumation of the Gf?hl terrane may be a consequence of lithospheric delamination during Early Carboniferous collision of Bohemia (Teplá-Barrandia) and Moldanubia (Franke, 2000).  相似文献   
937.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   
938.
Compressional and shear wave velocities and attenuation measurements have been carried out in some of the borehole samples of acidic, basic and intermediate granulites of Mahabalipuram, Tamil Nadu, India. The results have been obtained at ambient conditions using ‘time-of-flight’ pulse transmission technique at 1.0 MHz frequency. The results show linear relationships between velocity and density, and velocity and attenuation properties of the rocks. The acidic granulites show lower velocities and higher attenuation than the intermediate and basic granulites. The average values of the Poisson’s ratio of acidic, intermediate and basic granulites have been found to be 0.210, 0.241 and 0.279 respectively. The variations in velocities and attenuation in these low porosity crystalline rocks are found to be strongly influenced by their mineral composition. The laboratory velocity data (extrapolated to high pressure) of the present study and the published field velocity data from deep seismic sounding studies indicate that these granulite facies rocks may belong to mid-crustal depths only.  相似文献   
939.
Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril’sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号