首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   2篇
  国内免费   4篇
测绘学   2篇
大气科学   4篇
地球物理   36篇
地质学   38篇
海洋学   61篇
天文学   21篇
综合类   1篇
自然地理   10篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   16篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   8篇
  2008年   11篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
81.
A model for the hydrogen coma of a comet on the basis of the Monte Carlo method is presented. In this model isotropic ejections of H atoms produced by photodissociation of H2O and OH, thermalization of the H atoms due to collisions with ambient H2O molecules, and the solar radiation pressure have been taken into account. A production spectrum of H atoms from OH is evaluated by using the predissociation rates and the level populations of OH, confirming that the spectrum has a sharp peak around 8.0 km sec?1 with the standard deviation of 0.1 km sec?1. Including the above effects, velocity distribution functions of the H atoms at various positions in the coma for the first time, as well as their density and outflow velocity profiles, have been calculated. It is pointed out that the collisional thermalization process in the inner coma is an important factor at small heliocentric distances in determining the density profiles and the velocity distributions. It is shown that thermalization leads to an increase in the H density in the inner coma larger than those expected from other models such as the vectorial model, in which collision is not taken into account. Lyman α isophotes and its line profiles in the optically thin region are computed by using the velocity distribution function.  相似文献   
82.
83.
Earthquakes in active-folding zones often trigger long-lasting landform changes. Since an underground structure closely follows the motion of its surrounding soils and rocks even after it was damaged in an intense earthquake, experts in charge of reconstruction have to wait until they are convinced that the soils and rocks have been stabilized. Kizawa tunnel was seriously cracked during the 23 October 2004 Mid-Niigata Earthquake. The upper half of the tunnel's cross-section near the north mouth shifted about 0.5 m sideways. Since a ring-shaped cross-section of a tunnel sustains the surrounding soil pressure, this crack pattern seemed to be serious. The authors collaborated with the Nagaoka Regional Development Bureau, Niigata Prefectural Government, in investigating the causes of the damage and in conducting long-term observation of the soils and rocks. This paper summarizes some findings for rational rehabilitations through the investigations.  相似文献   
84.
The activity concentrations of 226Ra and 228Ac in weathered Japanese soils from two selected prefectures have been measured using a γ-ray spectroscopy system with high purity germanium detector. The uranium, thorium, and rare earth elements (REEs) concentrations were determined from the same soil samples using inductively coupled plasma mass spectrometry (ICP-MS). For example, granitic rocks contain higher amounts of U, Th, and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils since soils are complex heterogeneous mixture of organic and inorganic solids, water, and gases. In this paper, we will discuss about distribution pattern of 238U and 232Th along with REEs in soil samples of weathered acid rock (granite) collected from two prefectures of Japan: Hiroshima and Miyagi.  相似文献   
85.
The alkali-feldspar and biotite in the sillimanite-biotite-garnet gneiss from East Antarctica preserves characteristic microstructural evidence of multi-stage H2O supplement during the retrograde metamorphism. The first microstructural evidence is the “zoned feldspar,” in which the mesoperthitic zone, the anti-perthitic zone, and lamella-free plagioclase zone coexist within a single crystal. They are occasionally found next to biotite, and are always depleted in orthoclase (Or) component toward the biotite. The formation process of this microstructure could be explained by the diffusion that oversteps the solvus. The second microstructural evidence is the serrate boundary between alkali-feldspar and biotite. The projections of biotite are selectively developed next to Or lamellae of alkali-feldspar every 3–5 μm. These two microstructures would have formed as the biotite grew by consuming potash in alkali-feldspar when H2O-bearing fluid locally passed through the grain boundaries. The former microstructure was formed at 825–900 °C before lamella formation, and the latter microstructure was formed after the lamella formation. These microstructures are the indicators of fluid pathways formed under two different temperature conditions. The common coexistence of these microstructures implies that the fluid used similar pathways during the retrograde metamorphism.  相似文献   
86.
87.
A new polymorph of FeS has been observed at pressures above 30 GPa at 1,300 K by in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. It is stable up to, at least, 170 GPa at 1,300 K. The new phase (here called FeS VI) has an orthorhombic unit cell with lattice parameters a = 4.8322 (17) Å, b = 3.0321 (6) Å, and c = 5.0209 (8) Å at 85 GPa and 300 K. Its topological framework is based on the NiAs-type structure as is the case for the other reported polymorphs (FeS I-V). The unit cell of FeS VI is, however, more distorted (contracted) along the [010] direction of the original NiAs-type cell. For example, the c/b axial ratio is ~1.66 at 85 GPa and 300 K, which is considerably smaller than that of orthorhombic FeS II (~1.72) and NiAs-type hexagonal FeS V (=√3 ≈ 1.73). The phase boundary between FeS IV and VI is expected to be located around 30 GPa at 1,300 K. The phase transition is accompanied by gradual and continuous changes in volume and axial ratios and may be second order. At room temperature, FeS VI becomes stable over FeS III at pressures above 36 GPa. It is, therefore, suggested that the phase boundary of FeS III–VI and/or FeS IV–VI has negative pressure dependence.  相似文献   
88.
Calcium and magnesium‐bearing sabugalite occurs as aggregations of yellowish platy crystals in veinlets or druses in conglomerate from the oxidized parts of the Tono uranium deposit, Central Japan. X‐ray powder diffractometry of this mineral has reflections consistent with previous powder diffraction data of sabugalite. It is included in the monoclinic system with space group C2/m and calculated cell parameters of a = 19.68Å, b = 9.89Å, c = 9.82Å α = γ = 90°, β‐96.93° and V = 1897.83Å3. Chemical analysis yields a formula of (Ca0.10 Mg0.09)Σ0.19Al0.53(UO2)2.04((PO4)1.99(AsO4)0.01)Σ2.00·11.22H2O. EMPA mapping shows that the mineral is compositionally uniform with no micron‐scale layering. Charge of cations including Ca and Mg in the cation‐H2O layer is 1.98 being identical to that of autunite group minerals. This suggests that the charge balance in the cation‐H2O layer of the mineral could be made by the alkaline earth or alkaline elements rather than by hydrogen ions.  相似文献   
89.
The mechanism of the high pressure transformation of olivine in the presence of aqueous fluid was investigated by high pressure experiments conducted nominally at the wadsleyite + ringwoodite stability field at 14.5 GPa and 700 and 800°C. The microstructures of recovered samples were observed using an analytical transmission electron microscope (ATEM) for which foils were prepared using a focused ion beam technique. Glass films approximately 1 μm in width always occupied the interface between olivine and hydrous ringwoodite. ATEM measurements showed that the chemical compositions of the glass films had approximately the same Mg/Fe ratio as that of olivine, but a higher Si content. Micro-structural and -chemical observations suggest that these glass films formed as quenched glass from the aqueous fluid dissolving olivine and that hydrous ringwoodite was crystallized from the fluid. This indicates that the transformation of olivine to hydrous ringwoodite was prompted by the dissolution–reprecipitation process. The dissolution–reprecipitation process is considered an important mineral replacement mechanism in the Earth’s crust by which one mineral is replaced by a more stable phase or phases. However, this process has not previously been reported for deep mantle conditions.  相似文献   
90.
The thermoelastic parameters of the CAS phase (CaAl4Si2O11) were examined by in situ high-pressure (up to 23.7 GPa) and high-temperature (up to 2,100 K) synchrotron X-ray diffraction, using a Kawai-type multi-anvil press. PV data at room temperature fitted to a third-order Birch–Murnaghan equation of state (BM EOS) yielded: V 0,300 = 324.2 ± 0.2 Å3 and K 0,300 = 164 ± 6 GPa for K′ 0,300 = 6.2 ± 0.8. With K′ 0,300 fixed to 4.0, we obtained: V 0,300 = 324.0 ± 0.1 Å3 and K 0,300 = 180 ± 1 GPa. Fitting our PVT data with a modified high-temperature BM EOS, we obtained: V 0,300 = 324.2 ± 0.1 Å3, K 0,300 = 171 ± 5 GPa, K′ 0,300 = 5.1 ± 0.6 (?K 0,T /?T) P  = ?0.023 ± 0.006 GPa K?1, and α0,T  = 3.09 ± 0.25 × 10?5 K?1. Using the equation of state parameters of the CAS phase determined in the present study, we calculated a density profile of a hypothetical continental crust that would contain ~10 vol% of CaAl4Si2O11. Because of the higher density compared with the coexisting minerals, the CAS phase is expected to be a plunging agent for continental crust subducted in the transition zone. On the other hand, because of the lower density compared with lower mantle minerals, the CAS phase is expected to remain buoyant in the lowermost part of the transition zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号