首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   15篇
测绘学   7篇
大气科学   16篇
地球物理   45篇
地质学   102篇
海洋学   26篇
天文学   23篇
自然地理   37篇
  2023年   2篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   7篇
  2016年   8篇
  2015年   9篇
  2014年   4篇
  2013年   17篇
  2012年   7篇
  2011年   14篇
  2010年   10篇
  2009年   15篇
  2008年   9篇
  2007年   3篇
  2006年   8篇
  2005年   3篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   3篇
  1986年   5篇
  1984年   6篇
  1983年   2篇
  1981年   4篇
  1980年   4篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1961年   1篇
  1955年   2篇
  1937年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
1.
Geospatially Enabled Scientific Workflows offer a promising toolset to help researchers in the earth observation domain with many aspects of the scientific process. One such aspect is that of access to distributed earth observation data and computing resources. Earth observation research often utilizes large datasets requiring extensive CPU and memory resources in their processing. These resource intensive processes can be chained; the sequence of processes (and their provenance) makes up a scientific workflow. Despite the exponential growth in capacity of desktop computers, their resources are often insufficient for the scientific workflow processing tasks at hand. By integrating distributed computing capabilities into a geospatially enabled scientific workflow environment, it is possible to provide researchers with a mechanism to overcome the limitations of the desktop computer. Most of the effort on extending scientific workflows with distributed computing capabilities has focused on the web services approach, as exemplified by the OGC's Web Processing Service and by GRID computing. The approach to leveraging distributed computing resources described in this article uses instead remote objects via RPyC and the dynamic properties of the Python programming language. The Vistrails environment has been extended to allow for geospatial processing through the EO4Vistrails package ( http://code.google.com/p/eo4vistrails/ ). In order to allow these geospatial processes to be seamlessly executed on distributed resources such as cloud computing nodes, the Vistrails environment has been extended with both multi‐tasking capabilities and distributed processing capabilities. The multi‐tasking capabilities are required in order to allow Vistrails to run side‐by‐side processes, a capability it does not currently have. The distributed processing capabilities are achieved through the use of remote objects and mobile code through RPyC.  相似文献   
2.
Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.  相似文献   
3.
Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low‐Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low‐Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high‐Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low‐Ti mare basalt 15555, the highest concentrations of Li occur in late‐stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low‐ and high‐Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low‐Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high‐Ti: δ7Li >6‰; δ56Fe >0.18‰; δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large‐degree, high‐temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late‐stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile‐poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between ?2.5‰ and 4‰. The higher δ7Li in planetary basalts than in the compilation of chondrites (2.1 ± 1.3‰) demonstrates that differentiated planetary basalts are, on average, isotopically heavier than most chondrites.  相似文献   
4.
In a recent paper by Das et al. (Astrophys. Space Sci. 361:99, 2016) it was shown that the sign of the anisotropy parameter plays a pivotal role in determining the time of formation of the horizon of a collapsing radiating star. Spurred on by this observation we investigate the impact of the (an)isotropy featured in the (Das et al. in Astrophys. Space Sci. 361:99, 2016) collapsing model on the temperature profiles of the evolving system. We show that the temperature within the stellar interior is increased as the anisotropy in the pressure grows. Relaxational effects due to heat dissipation within the core further enhances the temperature at each interior point of the stellar distribution.  相似文献   
5.
Abstract— Batch culture experiments were performed to investigate the weathering of meteoritic material by iron‐oxidizing bacteria. The aerobic, acidophilic iron oxidizer (A. ferrooxidans) was capable of oxidizing iron from both carbonaceous chondrites (Murchison and Cold Bokkeveld) and iron meteorites (York and Casas Grandes). Preliminary iron isotope results clearly show contrasted iron pathways during oxidation with and without bacteria suggesting that a biological role in meteorite weathering could be distinguished isotopically. Anaerobic iron‐oxidizers growing under pH‐neutral conditions oxidized iron from iron meteorites. These results show that rapid biologically‐mediated alteration of extraterrestrial materials can occur in both aerobic and anaerobic environments. These results also demonstrate that iron can act as a source of energy for microorganisms from both iron and carbonaceous chondrites in aerobic and anaerobic conditions with implications for life on the early Earth and the possible use of microorganisms to extract minerals from asteroidal material.  相似文献   
6.
The Anvil Spring Canyon fan of the Panamint Range piedmont in central Death Valley was built entirely by water-flow processes, as revealed by an analysis of widespread 2- to 12-m-high stratigraphic cuts spanning the 9·7 km radial length of this 2·5–5·0° sloping fan. Two facies deposited from fan sheetfloods dominate the fan from apex to toe. The main one (60–95% of cuts) consists of sandy, granular, fine to medium pebble gravel that regularly and sharply alternates with cobbly coarse to very coarse pebble gravel in planar couplets 5–25 cm thick oriented parallel to the fan surface. The other facies (0–25% of cuts) comprises 10- to 60-cm-thick, wedge-planar and wedge-trough beds of pebbly sand and sandy pebble gravel in backsets sloping 3–28°. Both facies are interpreted as resulting from rare, sediment-charged flash floods from the catchment, and were deposited by supercritical standing waves of expanding sheetfloods on the fan. Standing waves were repeatedly initiated, enlarged, migrated, and then terminated either by gradually rejoining the flood or by more violent breakage and washout. The frequent autocyclic growth and destruction of standing waves during an individual sheetflood resulted in the deposition of multiple coarse and fine couplet and backset sequences 50–250 cm thick across the active depositional lobe of the fan. Erosional intensity during washout of the standing wave determined whether early-phase backset-bed deposits or washout-phase sheetflood couplet deposits were selectively preserved in a given cycle. Two minor facies are also found in the Anvil fan. Pebble–cobble gravel lags (0–20% of cuts) are present above erosional scours into the sheetflood couplet and backset deposits. They consist of coarse gravel concentrated through fine-fraction winnowing of the host sheetflood facies by sediment-deficient water flows. This reworking occurred during recessional flood stage or from non-catastrophic discharge during the long intervals between major flash floods. This facies is common at the surface, giving rise to a ‘braided-stream’ appearance. However, it is stratigraphically limited, present as thin, continuous to discontinuous beds or lenses that bound 50- to 250-cm-thick sheetflood sequences. The other minor facies of the Anvil fan consists of clast-supported and imbricated, thickly stratified, pebbly, cobbly, boulder gravel present in narrow, radially aligned ribbons nested within sheetflood deposits. This facies is interpreted as representing deposition in the incised channel of the fan, a subenvironment characterized by greater flow competence resulting from maintained depth from channel-wall confinement, and by more frequent water flows and winnowing events caused by its direct connection with the catchment feeder channel.  相似文献   
7.
Plankton metabolism andRuppia maritima biomass were measured seasonally during 1982–83 in El Verde Lagoon, a small coastal lagoon with an ephemeral inlet on the Pacific Coast of Mexico. Total net aquatic primary production was 521 g C m?2 y?1. The water column was slightly heterotrophic, with an annual P/R ratio of 0.89. Our analysis indicates that tropical and subtropical coastal lagoons with restricted or seasonal inlets have generally higher net aquatic primary productivity levels than lagoons with permanently open inlets. We hypothesize that this is due to retention of nutrients and plankton stocks during the dry season. The seasonal pattern of water column metabolism was related to rainfall and riverflow, with higher values generally occurring during the wet season. Net production and respiration were about three times lower during the 1982 dry season as compared to the 1983 dry season which received considerable rains due to abnormal climatic conditions. The biomass ofR. maritima ranged from zero to 620 g dry wt m?2. Growth occurred only during the dry season and there were two distinct biomass peaks representing two separate crops. The second crop was heavily epiphytized with nitrogen-fixing algae. There was an apparent succession in dominance of water column productivity over the year, withRuppia dominating during the dry season and phytoplankton more important during the wet season.  相似文献   
8.
Aquatic primary productivity, mangrove ecology, and fish community dynamics were investigated in the Teacapán-Agua Brava lagoon-estuarine system, the most extensive mangrove ecosystem on the Pacific coast of Mexico with three species of mangroves distributed heterogeneously (Laguncularia racemosa, Rhizophora mangle, andAvicennia germinans). Tree density was 3,203 trees ha?1 and basal area was 14.0 m2 ha?1. Litterfall was 1,417 g m?2 yr?1, characteristic of a productive riverine forest. The degradation constant forLaguncularia racemosa leaves varied from 1.71 to 4.7 yr?1 and mean annual net aquatic productivity was 0.41 g C m?3 d?1. There were high concentrations of humic substances (up to 150 mg l?1) early in the wet season. Seasonal variations of the above parameters seemed closely related to the ecology of fish populations. There were 75 fish species distributed in two principal assemblages associated with wet and dry seasons. Diversity and biomass analysis indicated 18 dominant species. Total biomass of the community in this coastal system was estimated at 10 g wet wt m?2. The highest biomass occurred in the wet season. The most common fish species wereMugil curema, Achirus mazatlanus, Galeichthys caerulescens, Arius liropus, Diapterus peruvianus, Lile stolifera, Centropomus robalito, andEucinostomus sp., all of which have fishery importance. Primary productivity and fish community ecology are controlled by habitat characteristics, river discharge, and climatic seasonality.  相似文献   
9.
Mélanges occur as discontinuous, mappable, units along an extensive N–S-trending, steeply dipping zone of distributed shear in metamorphic complexes along the coast of central Chile. Large mélange zones, from north to south, near Chañaral, Los Vilos, Pichilemu, and Chiloé Island, contain variations in lithologic and structural detail, but are consistent in exhibiting cross-cutting fabric features indicating a progressive transition from earlier ductile to more brittle deformation. In the Infiernillo mélange near Pichilemu, Permian to Early Triassic, sub-horizontal schistosity planes of the Western Series schist are disrupted, incorporated into, and uplifted along high-angle, N–S- to NNE–SSW-trending brittle–ductile shears. Mylonitic and cataclastic zones within the mélange matrix indicate active lateral shear during cumulative exhumation from depths exceeding 12 km in some areas. Exotic lithologies, such as Carboniferous mafic amphibolite and blueschist, formed during earlier Gondwanide subduction, match well with similar rocks in the Bahia Mansa to Los Pabilos region 750 km to the south, suggesting possible dextral offset. The development of the Middle to Late Triassic, N–S=trending, near-vertical shear zones formed weaknesses in the crust facilitating later fault localization, gravitational collapse, and subduction erosion along the continental margin. The length and linearity of this zone of lateral movement, coincident with a general hiatus of regional arc magmatism during the Middle to Late Triassic, is consistent with large-scale dextral transpression, or possible transform movement, during highly oblique NNE–SSW convergence along the pre-Andean (Gondwana) margin. The resultant margin parallel N–S-trending shear planes may be exploited by seismically active faults along the present coastal area of Chile. The palaeo-tectonic setting during the transitional period between earlier Gondwanide (Devonian to Permian) and later Andean (Late Jurassic to present) subduction may have had some similarity to the presently active San Andreas transform system of California.  相似文献   
10.
Supercritical gas sorption on moist coals   总被引:1,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号