首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   2篇
  国内免费   1篇
大气科学   1篇
地球物理   17篇
地质学   19篇
海洋学   7篇
天文学   10篇
综合类   1篇
自然地理   9篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2014年   3篇
  2013年   6篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1976年   3篇
  1975年   1篇
排序方式: 共有64条查询结果,搜索用时 109 毫秒
41.
We present an exact solution of the equations for orbit determination of a two body system in a hyperbolic or parabolic motion. In solving this problem, we extend the method employed by Asada, Akasaka and Kasai (AAK) for a binary system in an elliptic orbit. The solutions applicable to each of elliptic, hyperbolic and parabolic orbits are obtained by the new approach, and they are all expressed in an explicit form, remarkably, only in terms of elementary functions. We show also that the solutions for an open orbit are recovered by making a suitable transformation of the AAK solution for an elliptic case.  相似文献   
42.
Rock erosion is attracting increasing attention from scientists worldwide. The area encompassing the Saint John Baptist Church, Saint John Village, XVII century ruins in Rio Grande do Sul at the UNESCO World Heritage Site is considered a Brazilian treasure. However, the risk of damage to this site from rock erosion has recently increased tremendously. Generally, the rocky construction such as fence, wall and tomb stone, seems strong but is actually extremely sensitive to erosion caused by lichens, fungi, molds and bacteria. Because of biological erosion and massive exposure, the fresh rock is dominated by clays and microorganisms. Water-adsorbing clays and microorganisms influence the mechanisms of the rock erosion. In this study, the formation of bio-clay-minerals in porous structure of pisolite was demonstrated using electron microscopy. Bacterial clay mineralization can deform the rock structure and even produce organic materials. Biological activity could easily corrode rocky constructions around the Saint John Baptist Church site. The rocks are pisolitic laterites possibly formed in Tertiary over the Kretaceous Parana flood Basalts. Samples inhabited by lichens and fungi were collected from a collapsed wall in the ancient church. The zonal reddish-brown pisolites are 4 mm in diameter in a matrix of clays associated with porous and empty spaces. Elemental distribution maps from X-ray fluorescence microscopy show iron-rich spherules of pisolite, whereas the matrix is composed of Al, Si, Mn, and Sr; thus producing goethite and kaolinite. Transmission electron microscopic observation showed that various types of bacteria inhabit the spherule and are associated with clay minerals and graphite. STEM elemental analysis confirmed the bio-clay-mineralization with Al, Si, S, and Fe, around bacterial cells. The results presented here will improve our understanding of nm-scale bio-mineralization and bio-erosion in lateritic rocks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
43.
44.
A direct measurement of apparent velocities for oceanic paths was made with an array of sensitive ocean bottom seismographs. The measurement was performed by recording waves from shallow earthquakes which occurred in the area close to trench axes and which were accurately located by the land seismological network in Japan. The range of epicentral distances is from 500 to 1,800 km.The observed P travel times are less than those in the Jeffreys-Bullen tables by 6–10 s for the range of distances.Since the dimension of the OBS array is about 400 km, the apparent velocities are determined quite precisely and show little dependence on the epicentral distances. The average value of the apparent velocities for the range 500–1,700 km is 8.64 ± 0.13 km/s.An offset of travel times, which is thought to be associated with a low-velocity layer underneath the oceanic lithosphere, has been observed.These results indicate that a high-velocity layer with a velocity of 8.6 km/s exists in the lower part of the oceanic lithosphere. Beneath the 8.6-km/s layer there is a thin low-velocity layer under which the velocity of the P wave is again 8.6 km/s.  相似文献   
45.
Several long-range explosion seismology experiments have been conducted in the northwestern Pacific basin, where one of the oldest oceanic lithospheres is postulated to exist. The experiments were conducted from 1974 to 1980. Highly sensitive ocean-bottom seismographs which had been developed for longshot experiments were used. The lengths of the profiles ranged from 1000 to 1800 km, and the directions were chosen to provide wide azimuthal coverage. One of the aims of this series of experiments was to test the existence of velocity anisotropy on a large, regional scale.The results show that the oceanic lithosphere has anisotropy wherein the velocity changes by 4–7%. The anisotropy extends from a depth of at least 40 to 140 km beneath the sea bottom; however, the magnitude of the anisotropy may vary with depth. The azimuth of the maximum velocity is 150–160° clockwise from north, and coincides with the “fossil” direction of spreading of the Pacific plate, whereas it differs from the present direction of plate motion by ~ 30°. The azimuth does not seem to depend on depth. In the direction of maximum velocity, the lithosphere is basically two-layered: 8.0–8.2 and 8.6 km s?1. The depth of the interface is 50–60 km beneath the sea floor.  相似文献   
46.
As part of the U.S. JGOFS Program and the NOAA Ocean-Atmosphere Carbon Exchange Study (DACES), measurements of C02 partial pressure were made in the atmosphere and in the surface waters of the central and eastern equatorial Pacific during the boreal spring and autumn of 1992, the spring of 1993, and the spring and autumn of 1994. Surface-water pC02 data indicate significant diurnal, seasonal, and interannual variations. The largest variations were associated with the 1991–1994 ENSO event, which reached maximum intensity in the spring of 1992. The lower values of surface-water ΔpC02 observed during the 1991–1994 ENSO period were the result of the combined effects of both remotely and locally forced physical processes. The warm pool, which reached a maximum eastward extent in January-February of 1992, began in September of 1991 as a series of westerly wind events lasting about 30 days. Each wind event initiated an eastward propagating Kelvin wave which caused a deepening of the thermocline. By the end of January 1992 the thermocline was at its maximum depth, so that the upwelled water was warm and C02-depleted. In April of the same year, the local winds were weaker than normal, and the upwelling was from shallow depths. These changes resulted in a lower-than-normal C02 flux to the atmosphere. The results show that for the one-year period from the fall of 1991 until the fall of 1992, approximately 0.3 GtC were released to the atmosphere; 0.6 GtC were released in 1993, and 0.7 GtC in 1994, in good agreement with the model results of Ciais et al. [Science,269,1098–1102;J. Geophys. Res.,100, 5051–5070]. The net reduction of the ocean-atmosphere C02 flux during the 1991–1994 El Nifio was on the order of 0.8 – 1.2 GtC. Thus, the total amount of C02 sequestered in the equatorial oceans during the prolonged 1991–1994 El Nin˜o period was about 25% higher than the severe El Nin˜o of 1982–1983.  相似文献   
47.
Wang  Lin  Seko  Ichiro  Fukuhara  Makoto  Towhata  Ikuo  Uchimura  Taro  Tao  Shangning 《Natural Hazards》2022,114(1):127-156

Slope monitoring and early warning systems are a promising approach toward mitigating landslide-induced disasters. Many large-scale sediment disasters result in the destruction of infrastructure and loss of human life. The mitigation of vulnerability to slope and landslide hazards will benefit significantly from early warning alerts. The authors have been developing monitoring technology that uses a micro-electro-mechanical systems tilt sensor array that detects the precursory movement of vulnerable slopes and informs the issuance of emergency caution and warning alerts. In this regard, the determination of alarm thresholds is very important. Although previous studies have investigated the recording of threshold values by an extensometer which installation of an extensometer at appropriate sites is also difficult. The authors prefer tilt sensors and have proposed a novel threshold for the tilt angle, which was validated in this study. This threshold has an interesting similarity to previously reported viscous models. Additionally, multi-point monitoring has recently emerged and allows for many sensors to be deployed at vulnerable slopes without disregarding the slope’s precursory local behavior. With this new technology, the detailed spatial and temporal variation of the behavior of vulnerable slopes can be determined as the displacement proceeds toward failure.

  相似文献   
48.
We use the finite difference method to simulate seismic wavefields at broadband land and seafloor stations for a given terrestrial landslide source, where the seafloor stations are located at water depths of 1,900–4,300 m. Our simulation results for the landslide source explain observations well at the seafloor stations for a frequency range of 0.05–0.1 Hz. Assuming the epicenter to be located in the vicinity of a large submarine slump, we also model wavefields at the stations for a submarine landslide source. We detect propagation of the Airy phase with an apparent velocity of 0.7 km/s in association with the seawater layer and an accretionary prism for the vertical component of waveforms at the seafloor stations. This later phase is not detected when the structural model does not consider seawater. For the model incorporating the seawater, the amplitude of the vertical component at seafloor stations can be up to four times that for the model that excludes seawater; we attribute this to the effects of the seawater layer on the wavefields. We also find that the amplification of the waveform depends not only on the presence of the seawater layer but also on the thickness of the accretionary prism, indicating low amplitudes at the land stations and at seafloor stations located near the trough but high amplitudes at other stations, particularly those located above the thick prism off the trough. Ignoring these characteristic structures in the oceanic area and simply calculating the wavefields using the same structural model used for land areas would result in erroneous estimates of the size of the submarine landslide and the mechanisms underlying its generation. Our results highlight the importance of adopting a structural model that incorporates the 3D accretionary prism and seawater layer into the simulation in order to precisely evaluate seismic wavefields in seafloor areas.  相似文献   
49.
50.
We present Hα observations from ARIES (Nainital) of a compact and impulsive solar flare that occurred on March 10, 2001 and which was associated with a CME. We have also analyzed HXT, SXT/Yohkoh observations as well as radio observations from the Nobeyama Radio Observatory to derive the energetics and dynamics of this impulsive flare. We coalign the Hα, SXR, HXR, MW, and magnetogram images within the instrumental spatial-resolution limit. We detect a single HXR source in this flare, which is found spatially associated with one of the Hα bright kernels. The unusual feature of HXR and Hα sources, observed for the first time, is the rotation during the impulsive phase in a clockwise direction. We propose that the rotation may be due to asymmetric progress of the magnetic reconnection site or may be due to the change of the peak point of the electric field. In MW emission we found two sources. The main source is at the main flare site and another is in the southwest direction. It appears that the remote source is formed by the impact of accelerated energetic electrons from the main flare site. From the spatial correlation of multiwavelength images of the different sources, we conclude that this flare has a three-legged structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号