首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   8篇
  国内免费   2篇
测绘学   2篇
大气科学   8篇
地球物理   51篇
地质学   55篇
海洋学   57篇
天文学   43篇
自然地理   17篇
  2024年   1篇
  2021年   4篇
  2019年   1篇
  2018年   3篇
  2017年   7篇
  2016年   8篇
  2015年   3篇
  2014年   11篇
  2013年   12篇
  2012年   10篇
  2011年   11篇
  2010年   20篇
  2009年   11篇
  2008年   11篇
  2007年   14篇
  2006年   12篇
  2005年   10篇
  2004年   3篇
  2003年   9篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   8篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有233条查询结果,搜索用时 531 毫秒
81.
The distribution of organic carbon and its relationship to vegetation development were examined on a glacier foreland near Ny-Ålesund, Svalbard (79°N). In a 0.72-km2 area, we established 43 study plots on three line transects along primary succession from recently deglaciated area to old well-vegetated area. At each plot, we measured the type and percent coverage of vegetation types. The organic carbon content of vegetation, organic soil, and mineral soil samples was determined based on their organic carbon concentration and bulk density. Cluster analysis based on vegetation coverage revealed five types of ground surfaces representing variations in the amounts and allocation patterns of organic carbon. In the later stages of succession, 7%–24% and 31%–40% of organic carbon was contained in the organic and deeper soil layers, respectively. Organic carbon storage in the later stages of succession ranged from 1.1 – 7.9 kg C m−2. A larger amount of organic carbon, including ancient carbon in a raised beach deposit, was expected to be contained in much deeper soil layers. These results suggest that both vegetation development and geological history affect ecosystem carbon storage and that a non-negligible amount of organic carbon is distributed in this High Arctic glacier foreland.  相似文献   
82.
Based upon our characterization of three separate stones by electron and X‐ray beam analyses, computed X‐ray microtomography, Raman microspectrometry, and visible‐IR spectrometry, Sutter's Mill is a unique regolith breccia consisting mainly of various CM lithologies. Most samples resemble existing available CM2 chondrites, consisting of chondrules and calcium‐aluminum‐rich inclusion (CAI) set within phyllosilicate‐dominated matrix (mainly serpentine), pyrrhotite, pentlandite, tochilinite, and variable amounts of Ca‐Mg‐Fe carbonates. Some lithologies have witnessed sufficient thermal metamorphism to transform phyllosilicates into fine‐grained olivine, tochilinite into troilite, and destroy carbonates. One finely comminuted lithology contains xenolithic materials (enstatite, Fe‐Cr phosphides) suggesting impact of a reduced asteroid (E or M class) onto the main Sutter's Mill parent asteroid, which was probably a C class asteroid. One can use Sutter's Mill to help predict what will be found on the surfaces of C class asteroids such as Ceres and the target asteroids of the OSIRIS‐REx and Hayabusa 2 sample return missions (which will visit predominantly primitive asteroids). C class asteroid regolith may well contain a mixture of hydrated and thermally dehydrated indigenous materials as well as a significant admixture of exogenous material would be essential to the successful interpretation of mineralogical and bulk compositional data.  相似文献   
83.
Abstract— Based on recent progress in simulating space weathering on asteroids using pulse‐laser irradiation onto olivine and orthopyroxene samples, detailed analyses of two of the A and R type asteroid reflectance spectra have been performed using reflectance spectra of laser‐treated samples. The visible‐near‐infrared spectrum of olivine is more altered than that of pyroxene at the same pulse‐laser energy, suggesting that olivine weathers more rapidly than orthopyroxene in space. The same trend can be detected from reflectance spectra of the asteroids, where the more olivine an asteroid has, the redder its 1 μm band continuum can become. Comparison of the 1 μm band continuum slope and the 2/1 μm band area ratio between the asteroids and olivine and pyroxene samples (including the laser‐treated ones) suggests that asteroids may be limited in the degree of space weathering they can exhibit, possibly due to the short life of their surface regolith. Their pyroxenes may also have a limited chemical composition range. Fitting the visible continuum shape and other parts of the spectra (especially the 2μm part) has been impossible with any combination of common rock‐forming minerals such as silicates and metallic irons. However, this study shows, for the first time, excellent fits of reflectance spectra of an A asteroid (Aeternitas) and an R asteroid (Dembowska), including their visible spectral curves, band depths and shapes, and overall continuum shapes. Our results provide estimates that Aeternitas consists of 2% fresh olivine, 93% space‐weathered olivine, 1% space‐weathered orthopyroxene, and 4% chromite, and that Dembowska consists of 1% fresh olivine, 55% space‐weathered olivine, and 44% space‐weathered orthopyroxene. These results suggest that space weathering effects maybe important to the interpretation of asteroid reflectance spectra, even those with deep silicate absorption bands. Modified Gaussian model deconvolutions of the laser‐irradiated olivine samples show that their identity as olivine remained. The most recent submicroscopic mineralogical analyses have revealed that the laser‐irradiated olivine samples contain nanophase iron particles similar to those in space‐weathered lunar samples.  相似文献   
84.
85.
86.
Zircon grains were separated from lunar regolith and rocks returned from four Apollo landing sites, and analyzed in situ by secondary ion mass spectrometry. Many regolith zircons preserve magmatic δ18O and trace element compositions and, although out of petrologic context, represent a relatively unexplored resource for study of the Moon and possibly other bodies in the solar system. The combination of oxygen isotope ratios and [Ti] provides a unique geochemical signature that identifies zircons from the Moon. The oxygen isotope ratios of lunar zircons are remarkably constant and unexpectedly higher in δ18O (5.61 ± 0.07 ‰ VSMOW) than zircons from Earth’s oceanic crust (5.20 ± 0.03 ‰) even though mare basalt whole-rock samples are nearly the same in δ18O as oceanic basalts on Earth (~5.6 ‰). Thus, the average fractionation of oxygen isotopes between primitive basalt and zircon is smaller on the Moon [Δ18O(WR-Zrc) = 0.08 ± 0.09 ‰] than on Earth (0.37 ± 0.04 ‰). The smaller fractionations on the Moon suggest higher temperatures of zircon crystallization in lunar magmas and are consistent with higher [Ti] in lunar zircons. Phase equilibria estimates also indicate high temperatures for lunar magmas, but not specifically for evolved zircon-forming melts. If the solidus temperature of a given magma is a function of its water content, then so is the crystallization temperature of any zircon forming in that melt. The systematic nature of O and Ti data for lunar zircons suggests a model based on the following observations. Many of the analyzed lunar zircons are likely from K, rare earth elements, P (KREEP)-Zr-rich magmas. Zircon does not saturate in normal mafic magmas; igneous zircons in mafic rocks are typically late and formed in the last most evolved portion of melts. Even if initial bulk water content is moderately low, the late zircon-forming melt can concentrate water locally. In general, water lowers crystallization temperatures, in which case late igneous zircon can form at significantly lower temperatures than the solidus inferred for a bulk-rock composition. Although lunar basalts could readily lose H2 to space during eruption, lowering water fugacity; the morphology, large size, and presence in plutonic rocks suggest that many zircons crystallized at depths that retarded degassing. In this case, the crystallization temperatures of zircons are a sensitive monitor of the water content of the parental magma as well as the evolved zircon-forming melt. If the smaller Δ18O(zircon–mare basalt) values reported here are characteristic of the Moon, then that would suggest that even highly evolved zircon-forming magmas on the Moon crystallized at higher temperature than similar magmas on Earth and that magmas, though not necessarily water-free, were generally drier on the Moon.  相似文献   
87.
88.
Comparison of the Lunar Radar Sounder (LRS) data to the Multiband Imager (MI) data is performed to identify the subsurface reflectors in Mare Serenitatis. The LRS is FM-CW radar (4–6 MHz) and the 2 MHz bandwidth leads to the range resolution of 75 m in a vacuum, whereas the sampling interval in the flight direction is about 75 m when an altitude of the spacecraft with polar orbit is nominal (100 km). Horizontally continuous reflectors were clearly detected by LRS in limited areas that consist of about 9% of the whole maria. The typical depth of the reflectors is estimated to be a few hundred meters. Layered structures of mare basalts are also discernible on some crater walls in the MI data of the visible bands (VIS). The VIS range has nine wavelengths of 415, 750, 900, 950, and 1000 nm, and their spatial resolution is 20 m/pixel at a nominal altitude. The stratigraphies around Bessel and Bessel-H craters in Mare Serenitatis are examined in this paper. It was revealed that the subsurface reflectors lie on the boundaries between basalt units with different chemical compositions. In addition, model calculations using the simplified radar equation indicate that the subsurface reflectors are not compositional interfaces but layer boundaries with a high-porosity contrast. These results suggest that the detected reflectors in Mare Serenitatis are regolith accumulated during so long hiatus of mare volcanisms enough for chemical composition of magma to change, not instantaneously. Therefore combination of the LRS and MI data has a potential to reveal characteristics of a series of magmatism forming each lithostratigraphic unit in Mare Serenitatis and other maria.  相似文献   
89.
Basement rocks that occur along the northern margin of the South Kitakami Terrane in Japan consist of Ordovician ultramafic rocks (Hayachine ultramafic complex), gneissose amphibolite (Kuromoriyama amphibolite), and mafic rocks (Kagura igneous rocks, KIR). The KIR are composed of metagabbro, metadolerite, metabasalt, and minor felsic–intermediate dikes. Although the KIR contain green hornblende due to metamorphism of greenschist to epidote–amphibolite facies, they rarely retain primary brown hornblende. Approximately 30% of the metabasalt shows porphyritic textures, with phenocrysts of saussuritized plagioclase and/or altered mafic minerals. The geochemistry of the common metadolerite and metabasalt of the KIR shows a tholeiite trend, a low TiO2 content, and high Th/Nb and Ti/V ratios. The KIR are therefore indicative of a supra‐subduction zone tectonic setting, which implies a backarc origin (as also indicated by discrimination diagrams). Trace element patterns of the KIR resemble those of the backarc‐basin basalt of the Japan and Yamato basins in the Japan Sea. We propose that the KIR formed during backarc spreading from the Ordovician to Early Silurian. This view is supported by the geochemical data, the tectonic setting of the Hayachine ultramafic rocks, and the provenance of clastics within Silurian sedimentary rocks.  相似文献   
90.
Interannual-to-decadal variations in the subtropical countercurrent (STCC) and low potential vorticity (PV) water and their relations in the North Pacific Ocean are investigated on the basis of a 60-year-long hindcast integration of an eddy-resolving ocean general circulation model. Although vertically coherent variations are dominant for STCC interannual variability, a correlation analysis shows that an intensified STCC vertical shear accompanies lower PV than usual to the north on 25.5- to 26.1-σθ isopycnal surfaces, and intensified meridional density gradient in subsurface layers, consistent with Kubokawa’s theory (J Phys Oceanogr 29:1314–1333, 1999). The low-PV signals appear at least 2 years before peaks of STCC, propagating southwestward from the subduction region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号