首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   4篇
  国内免费   2篇
测绘学   3篇
大气科学   9篇
地球物理   33篇
地质学   42篇
海洋学   29篇
天文学   34篇
综合类   2篇
自然地理   9篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   4篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   5篇
  2000年   11篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有161条查询结果,搜索用时 31 毫秒
151.
Horizontal wind fields over Funka Bay during cold air outbreaks were simulated using a 3-D meso-scale atmospheric model. The simulated wind fields over the bay have a positive curl in the north and a negative curl in the south. These wind fields were used to simulate the current in Funka Bay using a barotropic ocean model. The simulated current pattern was composed of two vortices—one with anti-clockwise vorticity in the north and the other with clockwise vorticity in the south—and was in the opposite direction to that simulated by the uniform wind fields. This is because the wind stress curl effect on the vorticity production in Funka Bay opposes and overwhelms the bathymetry torque effect during cold air outbreaks. These results show that the non-uniformity of the wind fields caused by the land topography around a shallow lake or bay cannot be neglected in simulating its currents.  相似文献   
152.
The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the conductor identified beneath the 1st crater is mainly composed of hydrothermally altered zone that acts both as a cap to upwelling fluids supplied from deep-level magma and as a floor to infiltrating fluid from the crater lake. The relatively resistive body found beneath the 4th crater represents consolidated magma. These results suggest that the shallow conductor beneath the active crater is closely related to a component of the mechanism that controls volcanic activity within Naka-dake.  相似文献   
153.
An interpretation of Akeno giant air shower array (AGASA) data by comparing the experimental results with the simulated ones by cosmic ray simulation for KASCADE (CORSIKA) has been made. General features of the electromagnetic component and low energy muons observed by AGASA can be well reproduced by CORSIKA. The form of the lateral distribution of charged particles agrees well with the experimental one between a few hundred metres and 2000 m from the core, irrespective of the hadronic interaction model studied and the primary composition (proton or iron). It does not depend on the primary energy between 1017.5 and 1020 eV as the experiment shows. If we evaluate the particle density measured by scintillators of 5 cm thickness at 600 m from the core S0(600), suffix 0 denotes the vertically incident shower) by taking into account the similar conditions as in the experiment, the conversion relation from S0(600) to the primary energy is expressed as E (eV)=2.15×1017S0(600)1.015 within 10% uncertainty among the models and composition used, which suggests the present AGASA conversion factor is the lower limit. Although the form of the muon lateral distribution fits well to the experiment within 1000 m from the core, the absolute values change with hadronic interaction model and primary composition. The slope of the ρμ(600) (muon density above 1 GeV at 600 m from the core) vs. S0(600) relation in experiment is flatter than that in simulation of any hadronic model and primary composition. As the experimental slope is constant from 1015 to 1019 eV, we need to study this relation in a wide primary energy range to infer the rate of change of chemical composition with energy.  相似文献   
154.
155.
In this study, the historical distribution of metals, phosphorous, and sulfur at four different depths in the sediments of different lakes formed in the course of an urban river (in Londrina, Parana State, Brazil) were determined. The transport of metals along the course of the river was observed mainly for Mn, Cr, and Zn. High concentrations of Pb in the Capivara Bay and Cr in the river were attributed to contamination from a battery plant and a tannery, respectively. The concentrations of heavy metals in the deepest layers of the sediments remain high several years after deposition.  相似文献   
156.
Concentrations of 4-nonylphenol (NP) were determined by isomer-specific quantification of individual NP isomers based on relative response factor (RRF) quantification with GC–MS in combination with steam distillation extraction. Concentrations of NP in the Ariake Sea decreased with distance from the river mouth (St.A; 49 ng NP/l) to offshore areas (St.C; 11 ng NP/l). Even the least concentration in water from St.C in Ariake Sea was sufficient to have adverse effects on barnacles. The isomers, NP1–NP14 were separated by GC–PFC and identified structurally with NMR. The isomers varied in estrogenic activity with NP7 exhibiting the greatest estrogenic activity with a potency that was approximately 1.9 × 10−3 that of 17β-estradiol (E2) in recombinant yeast screen system. The coefficient of variation (CV) of NP isomer’s concentrations among three samples at St.A, B and C were 4–75%. This suggests that NP isomers might be independently degraded in aquatic environmental samples. The predicted estrogenic activity of measured concentrations of NP in Ariake Sea was 2.7–3.0-fold greater than the measured estrogen agonist activity.  相似文献   
157.
An airborne laser scanner can identify shallow landslides even when they are only several meters in diameter and are hidden by vegetation, if the vegetation is coniferous or deciduous trees in a season with fewer leaves. We used an airborne laser scanner to survey an area of the 1998 Fukushima disaster, during which more than 1,000 shallow landslides occurred on slopes of vapor-phase crystallized ignimbrite overlain by permeable pyroclastics. We identified landslides that have occurred at the 1998 event and also previous landslides that were hidden by vegetation. The landslide density of slopes steeper than 20° was 117 landslides/km2 before the 1998 disaster. This event increased the density by 233 landslides/km2 indicating that this area is highly susceptible to shallow landsliding.  相似文献   
158.
This study reconstructed environmental changes to the seafloor associated with reclamation in Mishou Bay, Bungo Channel, Japan, based on measurements of sediment grain size, organic matter and sulfur contents of surface sediments and data from sediment cores. Grain size within sediment cores from the middle of Mishou Bay decreased from the beginning of the 1800s to the 1900s. In contrast, a grain size profile from the river mouth shows a gradual increase in grain size up through the sediment core. These changes in grain size indicate a decrease in tidal current velocity within the middle of the bay and that the delta system is gradually prograding from the river mouth. Records of organic matter composition and sulfur contents indicate that the effect of the river on seafloor sedimentation became stronger during the nineteenth century. These changes are related to reclamation during the late 1700s and 1800s. The decrease in sea area resulting from reclamation probably led to a decrease in tidal prism and current velocity. It is likely that the increasing effect of river water on sedimentation is associated with reclamation-related progradation of the river delta system.  相似文献   
159.
The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 has been determined in situ using a multi-anvil apparatus and synchrotron X-rays radiation at SPring-8. In spite of the similar X-ray diffraction profiles of these high-pressure phases with closely related structures, we were able to identify the occurrence of the mutual phase transformations based on the change in the difference profile by utilizing a newly introduced press-oscillation system. The boundary was located at ~18.9 GPa and 1,400°C when we used Shim’s gold pressure scale (Shim et al. in Earth Planet Sci Lett 203:729–739, 2002), which was slightly (~0.8 GPa) lower than the pressure as determined from the quench experiments of Katsura and Ito (J Geophys Res 94:15663–15670, 1989). Although it was difficult to constrain the Clapeyron slope based solely on the present data due to the kinetic problem, the phase boundary [P (GPa)=13.1+4.11×10−3×T (K)] calculated by a combination of a PT position well constrained by the present experiment and the calorimetric data of Akaogi et al. (J Geophys Res 94:15671–15685, 1989) reasonably explains all the present data within the experimental error. When we used Anderson’s gold pressure scale (Anderson et al. in J Appl Phys 65:1535–1543, 1989), our phase boundary was located in ~18.1 GPa and 1,400°C, and the extrapolation boundary was consistent with that of Kuroda et al. (Phys Chem Miner 27:523–532, 2000), which was determined at high temperature (1,800–2,000°C) using a calibration based on the same pressure scale. Our new phase boundary is marginally consistent with that of Suzuki et al. (Geophys Res Lett 27:803–806, 2000) based on in situ X-ray experiments at lower temperatures (<1,000°C) using Brown’s and Decker’s NaCl pressure scales.  相似文献   
160.
This study quantifies diapycnal mixing and vertical heat transfer in the Pacific side of the Arctic Ocean, where sea-ice cover has disappeared between July and September in the last few decades. We conducted microstructure measurements in the open water region around the Canada Basin from late summer to fall in 2009 and 2010 using R/V Mirai. In the study domain, the dissipation rate of turbulent kinetic energy, ε, is typically as low level as O(10?10) W kg?1, resulting in vertical heat diffusivity of O(10?7) m2 s?1, which is close to the molecular diffusivity of heat, suggesting comparatively little predominance of mechanical turbulent mixing. An exception is the case at the Barrow Canyon, where the strong baroclinic throughflow generates substantial vertical mixing, producing ε > O(10?7) W kg?1, because of the shear flow instability. Meanwhile, in the confluence region, where the warm/salty Pacific water and the cold/fresh Arctic basin water encounter, the micro-temperature profiles revealed a localized enhancement in vertical diffusivity of heat, reaching O(10?5) m2 s?1 or greater. In this region, an intrusion of warm Pacific water creates a horizontally interleaved structure, where the double-diffusive mixing facilitates vertical heat transfer between the intruding Pacific water and the surrounding basin waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号