首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25403篇
  免费   434篇
  国内免费   314篇
测绘学   716篇
大气科学   1797篇
地球物理   4879篇
地质学   8765篇
海洋学   2327篇
天文学   6307篇
综合类   51篇
自然地理   1309篇
  2021年   202篇
  2020年   237篇
  2019年   297篇
  2018年   606篇
  2017年   588篇
  2016年   730篇
  2015年   410篇
  2014年   701篇
  2013年   1306篇
  2012年   797篇
  2011年   1038篇
  2010年   965篇
  2009年   1260篇
  2008年   1128篇
  2007年   1159篇
  2006年   1133篇
  2005年   843篇
  2004年   837篇
  2003年   764篇
  2002年   718篇
  2001年   617篇
  2000年   639篇
  1999年   564篇
  1998年   556篇
  1997年   523篇
  1996年   395篇
  1995年   395篇
  1994年   414篇
  1993年   313篇
  1992年   309篇
  1991年   260篇
  1990年   312篇
  1989年   271篇
  1988年   255篇
  1987年   279篇
  1986年   237篇
  1985年   317篇
  1984年   341篇
  1983年   329篇
  1982年   313篇
  1981年   250篇
  1980年   268篇
  1979年   217篇
  1978年   207篇
  1977年   215篇
  1976年   179篇
  1975年   190篇
  1974年   177篇
  1973年   168篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 785 毫秒
701.
The petrogenesis of calc-alkaline magmatism in the Eocene AbsarokaVolcanic Province (AVP) is investigated at Washburn volcano,a major eruptive center in the low-K western belt of the AVP.New 40Ar/39Ar age determinations indicate that magmatism atthe volcano commenced as early as 55 Ma and continued untilat least 52 Ma. Although mineral and whole-rock compositionaldata reflect near equilibrium crystallization of modal phenocrysts,petrogenetic modeling demonstrates that intermediate compositionmagmas are hybrids formed by mixing variably fractionated andcontaminated mantle-derived melts and heterogeneous siliciccrustal melts. Nd and Sr isotopic compositions along with traceelement data indicate that silicic melts in the Washburn systemare derived from deep-crustal rocks broadly similar in compositionto granulite-facies xenoliths in the Wyoming Province. Our preferredexplanation for these features is that mantle-derived basalticmagma intruded repeatedly in the deep continental crust leadingto fractional crystallization, silicic melt production, andhomogenization of magmas, followed by ascent to shallow reservoirsand crystallization of new plagioclase-rich mineral assemblagesin equilibrium with the intermediate hybrid liquids. The implicationsof this process are that (1) some calc-alkaline magmas may onlybe recognized as hybrids on purely chemical grounds, particularlyin systems where mixing precedes and is widely separated fromcrystallization in space and time, and (2) given the role ascribedto crustal processes at Washburn volcano, the variation betweenrocks that follow calc-alkaline trends in the western AVP andthose that follow shoshonitic trends in the east cannot simplyreflect higher pressures of fractionation to the east in Moho-levelmagma chambers in the absence of crustal interaction. KEY WORDS: petrogenesis; magma mixing; calc-alkaline; Absaroka Volcanic Province; 40Ar/39Ar dates  相似文献   
702.
Crustal Evolution in the SW Part of the Baltic Shield: the Hf Isotope Evidence   总被引:17,自引:0,他引:17  
The results of a laser ablation microprobe–inductivelycoupled plasma mass spectrometry Lu–Hf isotope study ofzircons in 0·93–1·67 Ga rocks from southNorway indicate that early Proterozoic protoliths of the BalticShield have present-day 176Hf/177Hf  相似文献   
703.
Abstract Analogue flume experiments were conducted to investigate the transport and sedimentation behaviour of turbulent pyroclastic density currents. The experimental currents were scaled approximately to the natural environment in three ways: (1) they were fully turbulent; (2) they had a very wide range of particle sizes and associated Rouse numbers (the ratio of particle settling velocity to effective turbulent eddy velocity in the current); and (3) they contained particles of two different densities. Two sets of surge‐type experiments were conducted in a 5 m long, water‐filled lock‐exchange flume at five different volumetric particle concentrations from 0·6% to 23%. In one set (one‐component experiments), the currents contained just dense particles; in the other set (two‐component experiments), they contained both light and dense particles in equal volume proportions. In both sets of experiments, the population of each component had a log‐normal size distribution. In the two‐component experiments, the size range of the light particle population was selected in order to be in hydrodynamic equivalence with that of the dense particles. Dense particles were normally graded, both vertically and downstream, in the deposits from both sets of experiments. The mass loading (normalized to the initial mass of the suspension) and grain size of the dense component in the deposits decreased with distance from the reservoir and were insensitive to initial total particle concentration in the currents. On the other hand, in the two‐component experiments, the light particles were extremely sensitive to concentration. They were deposited in hydrodynamic equivalence with the dense particles from dilute currents, but were segregated efficiently at concentrations higher than a few per cent. With increasing particle concentration, the large, light particles were carried progressively further down the flume because of buoyancy effects. Deposits from the high‐concentration currents exhibited reverse vertical grading of the large, light particles. Efficient segregation of the light component was observed even if the bulk density of the current was less than that of the light particles. In both sets of experiments, marked inflexions in the rate of downstream decline in mass loading and maximum grain size of the dense component can be attributed to the presence of two different particle settling regimes in the flow: (1) particles with Rouse numbers >2·5, which did not respond to the turbulence and settled rapidly; and (2) particles with Rouse numbers <2·5, which followed the turbulent eddies and settled slowly. The results are applied to the transport and sedimentation dynamics of pyroclastic density currents that generate large, widespread ignimbrites. Field data fail to reveal significant departures from aerodynamic equivalence between pumice and lithic clasts in three such ignimbrites: the particulate loads of some large ignimbrites are transported principally in turbulent suspensions of low concentration. In some ignimbrites, the well‐developed inflexions in curves of maximum lithic (ML) size vs. distance can be attributed to the existence of distinct high and low Rouse number particle settling regimes that mark the transition from an overcharged state to one in which the residual particulate load is transported more effectively by turbulence.  相似文献   
704.
Creation of pathways for melt to migrate from its source is the necessary first step for transport of magma to the upper crust. To test the role of different dehydration‐melting reactions in the development of permeability during partial melting and deformation in the crust, we experimentally deformed two common crustal rock types. A muscovite‐biotite metapelite and a biotite gneiss were deformed at conditions below, at and above their fluid‐absent solidus. For the metapelite, temperatures ranged between 650 and 800 °C at Pc=700 MPa to investigate the muscovite‐dehydration melting reaction. For the biotite gneiss, temperatures ranged between 850 and 950 °C at Pc=1000 MPa to explore biotite dehydration‐melting under lower crustal conditions. Deformation for both sets of experiments was performed at the same strain rate (ε.) 1.37×10?5 s?1. In the presence of deformation, the positive ΔV and associated high dilational strain of the muscovite dehydration‐melting reaction produces an increase in melt pore pressure with partial melting of the metapelite. In contrast, the biotite dehydration‐melting reaction is not associated with a large dilational strain and during deformation and partial melting of the biotite gneiss melt pore pressure builds more gradually. Due to the different rates in pore pressure increase, melt‐enhanced deformation microstructures reflect the different dehydration melting reactions themselves. Permeability development in the two rocks differs because grain boundaries control melt distribution to a greater extent in the gneiss. Muscovite‐dehydration melting may develop melt pathways at low melt fractions due to a larger volume of melt, in comparison with biotite‐dehydration melting, generated at the solidus. This may be a viable physical mechanism in which rapid melt segregation from a metapelitic source rock can occur. Alternatively, the results from the gneiss experiments suggest continual draining of biotite‐derived magma from the lower crust with melt migration paths controlled by structural anisotropies in the protolith.  相似文献   
705.
Moraine chronology is combined with digital topography to model deglacial rates of paleoglacier volumes in both the Huancané Valley on the west side of the Quelccaya Ice Cap and the Upismayo Valley on the northwest side of the Cordillera Vilcanota. The fastest rates of deglaciation (39×10−5 to 114×10−5 km3 yr−1 and 112×10−5 to 247×10−5 km3 yr−1 for each valley, respectively) were calculated for the most recent paleoglaciers, corresponding to the last few centuries. These results are consistent with observations in the Venezuelan Andes showing high rates of deglaciation since the Little Ice Age. These rates also fall within the range of 20th century rates of deglaciation measured on the Quelccaya Ice Cap (29×10−5 to 220×10−5 km3 yr−1, Brecher and Thompson, 1993; Thompson, 2000). These results imply that rates of deglaciation may fluctuate significantly over time and that high rates of deglaciation may not be exclusive to the late 20th century. Equilibrium line altitude (ELA) depressions for the ice volumes of the last glaciation modeled here were computed as 230 m for the Quelccaya Ice Cap and 170 m for the Cordillera Vilcanota. Maximum ELA depressions are lower than previously published: <500 m for the Cordillera Vilcanota and <400 m for the Quelccaya Ice Cap. These lower values could imply a topographic control over paleoglacier extent.  相似文献   
706.
707.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   
708.
Applying an effective nailing system at a tunnel heading, not only improves the stability of the tunnel heading and limits deformation at the tunnel face, but it also reduces volume loss during excavation and hence reduces ground surface settlement. The effectiveness of a soil nail system is affected by many factors such as the diameter and stiffness of the nails. In this paper, a systematic parametric study was conducted to study the axial rigidity of a nail, EnAn, for improving the stability of tunnel headings and reducing ground movements in stiff clay. The parametric study involved a series of three-dimensional elasto-plastic coupled-consolidation finite element analyses. The stability of the tunnel face is improved with increasing EnAn. For a given nail density applied at the tunnel face, an optimum axial rigidity of the nail (EnAn)opt can be identified. The efficiency of the nailing system diminishes when (EnAn)opt is reached. The use of a soil nailing system reduces the magnitude of stress relief at the tunnel heading during excavation. Thus, this reduction of stress relief minimises the amount of soil yielding and excess pore water pressure generated in the soil around the tunnel heading.  相似文献   
709.
710.
Summary A hydro-mechanical testing system, which is capable of measuring both the flow rates and the normal and shear displacement of a rock fracture, was built to investigate the hydraulic behaviour of rough tension fractures. Laboratory hydraulic tests in linear flow were conducted on rough rock fractures, artificially created using a splitter under various normal and shear loading. Prior to the tests, aperture distributions were determined by measuring the topography of upper and lower fracture surfaces using a laser profilometer. Experimental variograms of the initial aperture distributions were classified into four groups of geostatistical model, though the overall experimental variograms could be well fitted to the exponential model. The permeability of the rough rock fractures decayed exponentially with respect to the normal stress increase up to 5 MPa. Hydraulic behaviours during monotonic shear loading were significantly affected by the dilation occurring until the shear stress reached the peak strength. With the further dilation, the permeability of the rough fracture specimens increased more. However, beyond shear displacement of about 7 to 8 mm, permeability gradually reached a maximum threshold value. The combined effects of both asperity degradation and gouge production, which prohibited the subsequent enlargement of mean fracture aperture, mainly caused this phenomenon. Permeability changes during cyclic shear loading showed somewhat irregular variations, especially after the first shear loading cycle, due to the complex interaction from asperity degradations and production of gouge materials. The relation between hydraulic and mechanical apertures was analyzed to investigate the valid range of mechanical apertures to be applied to the cubic law. Received June 12, 2001; accepted February 26, 2002 Published online September 2, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号