首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   6篇
  国内免费   2篇
测绘学   6篇
大气科学   19篇
地球物理   52篇
地质学   47篇
海洋学   8篇
天文学   26篇
自然地理   6篇
  2023年   1篇
  2021年   5篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   13篇
  2016年   6篇
  2015年   8篇
  2014年   10篇
  2013年   9篇
  2012年   20篇
  2011年   11篇
  2010年   4篇
  2009年   11篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2002年   6篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
11.
Understanding the mobility of chemical elements during fluid–rock interactions is critical to assess the geochemical evolution of a rock undergoing burial and metamorphism and, more generally, to constrain the geochemical budget of the subduction factory. In particular, determining the behavior and mobility of Ti in aqueous fluids constitutes a great challenge that is still under scrutiny. Here, we study plant fossils preserved in blueschist metasedimentary rocks from the Marybank Formation (New Zealand). Using scanning and transmission electron microscopies (SEM and TEM), we show that the carbonaceous material (CM) composing the fossils contains abundant nano-inclusions of Ti- and Fe-oxides. These nanocrystals are mainly anatase, rutile, and Fe–Ti oxides. The mineral composition observed within the fossils is significantly different from that detected in the surrounding rock matrix. We propose that Ti and Fe might have been mobilized by the alteration of a detrital Ti–Fe-rich protolith during an early diagenetic event under acidic and reducing conditions. Aqueous fluids rich in organic ligands released by the degradation of organic matter may have been involved. Moreover, using mass balance and petrological observations, we show that the contrasted mineralogy between the rock matrix and the fossil CM might be the consequence of the chemical isolation of fossil CM during the prograde path of the rock. Such an isolation results from the early formation of quartz and Fe-rich phyllosilicate layers enclosing the fossil as characterized by SEM and TEM investigations. Overall, this study shows that investigating minerals associated with CM down to the nanometer scale in metamorphic rocks can provide a precious record of early prograde geochemical conditions.  相似文献   
12.
13.
Wind and temperature profiles from a 10-m mast were measured over the frozen Baltic Sea. The Monin-Obukhov similarity theory applies well to runs carefully selected according to stationarity criteria. This provides relatively low-scattered results with the roughness length z 0 0.04 cm, the drag coefficient C D 1.5 × 10-3 and the Stanton number C H 1.00 × 10-3 under near-neutral conditions. The roughness length, however, behaves in a peculiar way under intense stratification conditions. The reasons proposed for this could lead to an extension of the theory. The mechanisms for momentum and heat transfers are also examined, revealing that there are two different regimes, the smooth and the rough, for the wall friction but not for the heat transfer. Further, the scatter of the data for momentum and heat transfer under the aerodynamically rough regime can be explained by the distinction between the type of thermal stability conditions.  相似文献   
14.
A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.  相似文献   
15.
The last two successful flybys of Io by Galileo in 2001 (orbits I31, I32) allowed the Near Infrared Mapping Spectrometer to enrich its collection of IR spectral image cubes of the satellite. These data cover hemispheric portions of Io, several volcanic centers as well as their surroundings with a spatial resolution ranging from 2 to 93 km pixel−1. They map thermal emission from the hot-spots and the distribution of solid SO2 in the 1.0-4.7 μm spectral range. We obtain maps of SO2 abundance and granularity from the NIMS data using the method of Douté et al. (2002, Icarus 158, 460-482). The maps are correlated to distinguish four different physical units that indicate zones of SO2 condensation, metamorphism and sublimation. We relate these information with visible images from Galileo's Solid State Imaging System and with detailed mapping of the thermal emission produced by Io's surface. Our principal goal is to understand the mechanisms controlling how lava, pyroclastics and gas are emitted by different types of volcanoes and how these products evolve. The 800 km diameter white ring of fallout created by a violent “Pillanian” eruption during summer of 2001 is at least partly composed of solid SO2 and has enriched preexisting regional deposits. Orange materials have been recently or are currently emplaced 240 km south from the main eruption site, possibly as sulfur flows. A similar event may have taken place in the past at Ababinili Patera (12.5° N, 142° W). Carefull study of SO2 maps covering the Emakong region also suggests that sulfur forms the bright channel-fed flow emerging from the south eastern side of the caldera. Within the main caldera of Tvashtar Catena completely cooled patches of crust exist. Elsewhere, the caldera is still cooling from previous episodes of flooding. We confirm that Amirani emits constantly large amount of SO2 gas by interaction of fresh lava with the volatiles of the underlying plains. Nevertheless SO2 frost is not the major component of the bright white ring seen in the SSI images. Over the whole Gish Bar region, SO2 frost seems barely stable and is constantly regenerated. The stability increases along gray filamentary structures which could be faults filled with materials having peculiar thermal properties. Northwest of Gish Bar Patera, a localized bright deposit shows an unusual spectral signature potentially indicative of H2O molecules forming ice crystals or being trapped in a nonidentified matrix. The Chaac region may present a thickened old crust reducing the geothermal flux to levels lower than 0.5 W m−2 and thus creating a cold trap for SO2. Looking at the abundance and degree of metamorphose of SO2, we establish the relative age of different flows and ejecta for the Sobo Fluctus. Finally the assumption that the white patches in visible images indicate SO2 rich deposits is once again challenged. In the Camaxtli region we identify a topographically controlled compact white deposit showing only moderate SO2 abundance. In contrast, we detect two spots of quite pure SO2 ice on the gray flanks of Emakong. Furthermore, the close association of fumarolic SO2 and red S2 already noted for several volcanic centers is observed at Tupan.  相似文献   
16.
17.
The recent improvements in the Gravity Recovery And Climate Experiment (GRACE) tracking data processing at GeoForschungsZentrum Potsdam (GFZ) and Groupe de Recherche de Géodésie Spatiale (GRGS) Toulouse, the availability of newer surface gravity data sets in the Arctic, Antarctica and North-America, and the availability of a new mean sea surface height model from altimetry processing at GFZ gave rise to the generation of two new global gravity field models. The first, EIGEN-GL04S1, a satellite-only model complete to degree and order 150 in terms of spherical harmonics, was derived by combination of the latest GFZ Potsdam GRACE-only (EIGEN-GRACE04S) and GRGS Toulouse GRACE/LAGEOS (EIGEN-GL04S) mean field solutions. The second, EIGEN-GL04S1 was combined with surface gravity data from altimetry over the oceans and gravimetry over the continents to derive a new high-resolution global gravity field model called EIGEN-GL04C. This model is complete to degree and order 360 and thus resolves geoid and gravity anomalies at half- wavelengths of 55 km at the equator. A degree-dependent combination method has been applied in order to preserve the high accuracy from the GRACE satellite data in the lower frequency band of the geopotential and to form a smooth transition to the high-frequency information coming from the surface data. Compared to pre-CHAMP global high-resolution models, the accuracy was improved at a spatial resolution of 200 km (half-wavelength) by one order of magnitude to 3 cm in terms of geoid heights. The accuracy of this model (i.e. the commission error) at its full spatial resolution is estimated to be 15 cm. The model shows a reduced artificial meridional striping and an increased correlation of EIGEN-GL04C-derived geostrophic meridional currents with World Ocean Atlas 2001 (WOA01) data. These improvements have led to select EIGEN-GL04C for JASON-1 satellite altimeter data reprocessing. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
18.
Substitution of the geostrophic wind by the actual upper wind in the equations of motion for the boundary layer implies less sensitivity of the mean wind to inertial effects. This is confirmed by observations, although the problem of computing time or spatial derivatives from scattered data reduces the accuracy and the clarity of the results. It is found that acceleration (deceleration) increases (decreases) the cross-isobar angle whereas the geostrophic drag coefficient is a minimum (maximum) for crosswind acceleration (deceleration). On the other hand, cold air advection increases the cross-isobar angle whereas the geostrophic drag coefficient is a maximum when the thermal wind is parallel to the surface wind. The universal functions A m and B m based on vertically averaged winds are also rather insensitive to inertial influences.  相似文献   
19.
Recent years have seen increasing interest in the concepts of compensation and ecosystem services. Regulation systems in the United States dealing with environmental protection (Superfund Act, Oil Pollution Act, National Environment Policy Act, Clean Water Act, Endangered Species Act, etc.) require those responsible for damage to ecosystem services to compensate for it “physically” and restore these services for the benefit of the entire population. This article, using simple indicators of compensation identified in the literature, attempts to analyze what types of ecological compensation are adopted, how performance is assessed, how standards on ecological equivalencies are adopted, and what are the costs of this compensation. To perform this analysis, compensatory measures carried out during the last ten years in the case of coastal and marine ecosystems in Florida have been addressed. The results show that: analysis criteria for the equivalencies between ecosystem services lost due to damage and ecosystem services gained due to compensatory measures are questionable; most compensation monitoring is for a relatively brief period of time and the data obtained during this period may be insufficient for assessing the net effect of the compensatory measure; the weaknesses regarding criteria for the equivalencies and the uncertainty about the relevant time-scale can be counter-balanced by increasing the area of compensation, a problematic solution at best.  相似文献   
20.
The South Tien Shan (STS) belt results from the last collision event in the western Central Asian Orogenic Belt (CAOB). Understanding its formation is of prime importance in the general framework of the CAOB. The Atbashi Range preserves high‐P (HP) rocks along the STS suture, but still, its global metamorphic evolution remains poorly constrained. Several HP units have been identified: (a) a HP tectonic mélange including boudins of mafic eclogites in a sedimentary matrix, (b) a large (>100 km long) high‐P metasedimentary unit (HPMU) and (c) a lower blueschist facies accretionary prism. Raman Spectroscopy on carbonaceous material combined with phengite and chlorite multiequilibria and isochemical phase diagram modelling indicates that the HPMU recorded homogeneous P–T conditions of 23–25 kbar and 560–570°C along the whole unit. 40Ar/39Ar dating on phengite from the HPMU ranges between 328 and 319 Ma at regional scale. These ages are interpreted as (re‐) crystallization ages of phengite during Tmax conditions at a pressure range of 20–25 kbar. Thermobarometry on samples from the HP tectonic mélange provides similar metamorphic peak conditions. Thermobarometry on the blueschist to lower greenschist facies accretionary prism indicates that it underwent P–T conditions of 5–6 kbar and 290–340°C, highlighting a 17–20 kbar pressure gap between the HPMU‐tectonic mélange units and the accretionary prism. Comparison with available geochronological data suggests a very short time span between the prograde path (340 Ma), HP metamorphic peak (330 Ma), the Tmax (328–319 Ma) and the final exhumation of the HPMU (303–295 Ma). Extrusion of the HPMU, accommodated by a basal thrust and an upper detachment, was driven by buoyant forces from 70–75 km up to 60 km depth, which directly followed continental subduction and detachment of the HPMU. At crustal depths, extrusion was controlled by collisional tectonics up to shallow levels. Lithological homogeneity of the HPMU and its continental‐derived character from the North Tien Shan suggest this unit corresponds to the hyper‐extended continental margin of the Kazakh continent, subducted southward below the north continental active margin of the Tarim craton. Integration of the available geological data allows us to propose a general geodynamic scenario for Tien Shan during the Carboniferous with a combination of (a) N‐dipping subduction below the Kazakh margin of Middle Tien Shan until 390–340 Ma and (b) S‐dipping subduction of remaining Turkestan marginal basins between 340 and 320 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号