首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   18篇
  国内免费   35篇
测绘学   19篇
大气科学   39篇
地球物理   187篇
地质学   290篇
海洋学   65篇
天文学   62篇
综合类   3篇
自然地理   125篇
  2023年   3篇
  2022年   5篇
  2021年   12篇
  2020年   10篇
  2019年   12篇
  2018年   19篇
  2017年   19篇
  2016年   20篇
  2015年   11篇
  2014年   42篇
  2013年   48篇
  2012年   19篇
  2011年   47篇
  2010年   28篇
  2009年   39篇
  2008年   45篇
  2007年   29篇
  2006年   20篇
  2005年   30篇
  2004年   21篇
  2003年   29篇
  2002年   21篇
  2001年   17篇
  2000年   12篇
  1999年   19篇
  1998年   12篇
  1997年   10篇
  1996年   19篇
  1995年   11篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   5篇
  1990年   10篇
  1989年   5篇
  1988年   5篇
  1987年   9篇
  1986年   7篇
  1985年   10篇
  1984年   11篇
  1983年   10篇
  1982年   7篇
  1981年   3篇
  1980年   7篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   6篇
  1973年   3篇
  1969年   2篇
排序方式: 共有790条查询结果,搜索用时 15 毫秒
51.
Hydrogeology Journal - Monitoring of dissolved methane concentrations in groundwater is required to identify impacts from oil and gas development and to understand temporal variability under...  相似文献   
52.
53.
CO2 injection in saline aquifers induces temperature changes owing to processes such as Joule–Thomson cooling, endothermic water vaporization, exothermic CO2 dissolution besides the temperature discrepancy between injected and native fluids. CO2 leaking from the injection zone, in addition to initial temperature contrast due to the geothermal gradient, undergoes similar processes, causing temperature changes in the above zone. Numerical simulation tools were used to evaluate temperature changes associated with CO2 leakage from the storage aquifer to an above-zone monitoring interval and to assess the monitorability of CO2 leakage on the basis of temperature data. The impact of both CO2 and brine leakage on temperature response is considered for three cases (1) a leaky well co-located with the injection well, (2) a leaky well distant from the injector, and (3) a leaky fault. A sensitivity analysis was performed to determine key operational and reservoir parameters that control the temperature signal in the above zone. Throughout the analysis injection-zone parameters remain unchanged. Significant pressure drop upon leakage causes expansion of CO2 associated with Joule–Thomson cooling. However, brine may begin leaking before CO2 breakthrough at the leakage pathway, causing heating in the above zone. Thus, unlike the pressure which increases in response to both CO2 and brine leakage, the temperature signal may differentiate between the leaking fluids. In addition, the strength of the temperature signal correlates with leakage velocity unlike pressure signal whose strength depends on leakage rate. Increasing leakage conduit cross-sectional area increases leakage rate and thus increases pressure change in the above zone. However, it decreases leakage velocity, and therefore, reduces temperature cooling and signal. It is also shown that the leakage-induced temperature change covers a small area around the leakage pathway. Thus, temperature data will be most useful if collected along potential leaky wells and/or wells intersecting potential leaky faults.  相似文献   
54.
This paper describes the in situ response of groundwater biofilms in an alluvial gravel aquifer system on the Canterbury Plains, New Zealand. Biofilms were developed on aquifer gravel, encased in fine mesh bags and suspended in protective columns in monitoring wells for at least 20 weeks. Four sites were selected in the same groundwater system where previous analyses indicated a gradient of increasing nitrate down the hydraulic gradient from Sites 1 to 4. Measurements during the current study classified the groundwater as oligotrophic. Biofilm responses to the nutrient gradients were assessed using bioassays, with biomass determined using protein and cellular and nucleic acid staining and biofilm activity using enzyme assays for lipid, carbohydrate, phosphate metabolism, and cell viability. In general, biofilm activity decreased as nitrate levels increased from Sites 1 to 4, with the opposite relationship for carbon and phosphorus concentrations. These results showed that the groundwater system supported biofilm growth and that the upper catchment supported efficient and productive biofilms (high ratio of activity per unit biomass).  相似文献   
55.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   
56.
The base of Earth's critical zone (CZ) is commonly shielded from study by many meters of overlying rock and regolith. Though deep CZ processes may seem far removed from the surface, they are vital in shaping it, preparing rock for infusion into the biosphere and breaking Earth materials down for transport across landscapes. This special issue highlights outstanding challenges and recent advances of deep CZ research in a series of articles that we introduce here in the context of relevant literature dating back to the 1500s. Building on several contributions to the special issue, we highlight four exciting new hypotheses about factors that drive deep CZ weathering and thus influence the evolution of life‐sustaining CZ architecture. These hypotheses have emerged from recently developed process‐based models of subsurface phenomena including: fracturing related to subsurface stress fields; weathering related to drainage of bedrock under hydraulic head gradients; rock damage from frost cracking due to subsurface temperature gradients; and mineral reactions with reactive fluids in subsurface chemical potential gradients. The models predict distinct patterns of subsurface weathering and CZ thickness that can be compared with observations from drilling, sampling and geophysical imaging. We synthesize the four hypotheses into an overarching conceptual model of fracturing and weathering that occurs as Earth materials are exhumed to the surface across subsurface gradients in stress, hydraulic head, temperature, and chemical potential. We conclude with a call for a coordinated measurement campaign designed to comprehensively test the four hypotheses across a range of climatic, tectonic and geologic conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
57.
Chemical studies of two ophiolite suites and of selected mid-oceanic rift (MOR) regions indicate the presence of certain magmatic compositions: basalt, Fe-enriched basalt, and sodium granite (plagiogranite). There is a notable lack of evidence for melts of intermediate composition (i.e. 50–60 wt.% SiO2). To determine possible relationships between basic rocks (basalts and gabbros) and acidic rocks (plagiogranites) a primitive basalt was fractionated at low pressure, under anhydrous conditions, and at different oxygen fugacities near the iron-wustite buffer and slightly above the quartz-fayalite-magnetite buffer. Samples of this basalt were taken to slightly above liquidus temperatures and then cooled at rates ranging from 1 to 2°C/hr. A liquid line of descent characterized by an Fe enrichment was delineated by quenching these experiments from a final temperature in the range of 1200 to 1000°C and analyzing the residual liquid (glass). After 95% crystallization of olivine, plagioclase, calcium pyroxene, and ilmenite, the residual liquid was an Fe-enriched basalt. This Fe-enriched basalt became immiscible at a temperature of about 1010°C. The immiscible phases produced were a more Fe-enriched basaltic liquid and a granitic liquid. The granitic liquid is similar in composition to the naturally occurring plagiogranites found in small volumes in ophiolites and in certain MOR regions. It is therefore concluded that silicate liquid immiscibility could be the petrogenetic process responsible for producing plagiogranite in some MOR regions and in some ophiolites. On the other hand, plagiogranites in ophiolites and MOR rock suites having andesitic and dacitic composition rocks may have evolved under conditions more closely approximating equilibrium crystallization and/or they may have evolved at high water pressures. The available experimental data suggest that amphibole would crystallize early and yield SiO2-enriched liquids at depths greater than 4.5 km for PH2O's in the range 0.6–1.0 Ptotal.The major problem in interpreting any of the natural plagiogranites as products of silicate liquid immiscibility is the fact that neither the Fe-enriched conjugate liquid or its crystalline equivalent has been described in the ophiolite or MOR literature. The identification of this Fe-rich conjugate magma is essential in any rock suite if a completely convincing case for silicate liquid immiscibility is to be made.  相似文献   
58.
59.
Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along ~130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.  相似文献   
60.
Transposed temperature drop calorimetry at 1000 °C was performed on natural zircons (ZrSiO4) from Sri Lanka that were partially to completely metamict due to α-decay event damage (0.06 to 11.7×1015 α-decay events/mg). The enthalpy of annealing at room temperature (ΔHanneal) varies sigmoidally as a function of radiation dose. ΔHanneal reaches a saturation plateau at radiation doses greater than 5×1015 α-decay events/mg. The annealing of several samples to a crystalline structure with broadened diffraction peaks does not significantly affect the enthalpy of annealing. The large magnitude of the enthalpy of annealing plateau, ?59±3 kJ/mol, suggests that the damage to the structure is pervasive on the scale of Angstroms, consistent with the loss of mid-range order characteristic of a glass. The energetics are consistent with, but do not require, chemical heterogeneity caused by micro-domains of amorphous SiO2-rich and ZrO2-rich regions in the metamict state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号