首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2386篇
  免费   60篇
  国内免费   60篇
测绘学   67篇
大气科学   377篇
地球物理   530篇
地质学   589篇
海洋学   626篇
天文学   185篇
综合类   36篇
自然地理   96篇
  2024年   2篇
  2023年   5篇
  2022年   21篇
  2021年   37篇
  2020年   40篇
  2019年   48篇
  2018年   116篇
  2017年   110篇
  2016年   159篇
  2015年   77篇
  2014年   152篇
  2013年   211篇
  2012年   103篇
  2011年   142篇
  2010年   145篇
  2009年   145篇
  2008年   136篇
  2007年   135篇
  2006年   107篇
  2005年   101篇
  2004年   103篇
  2003年   67篇
  2002年   54篇
  2001年   48篇
  2000年   33篇
  1999年   32篇
  1998年   23篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
排序方式: 共有2506条查询结果,搜索用时 0 毫秒
101.
Two-dimensional (2-D) electrical resistivity and three-dimensional (3-D) gravity explorations were undertaken to estimate the 3-D distribution of karst cavities at the area of Yongweol-ri in Korea where ground subsidence has occurred. Although the gravity method is a low-cost way of analyzing a 3-D continuous structure, its vertical resolving power is poor. In contrast, the electrical resistivity method can provide a 2-D and/or 3-D subsurface structure with a much higher lateral and vertical resolution than the gravity method. Accordingly, geostatistical methods and density information were used to enhance the 2-D resistivity structure revealed by the electrical resistivity method into a 3-D structure. The assumptions are, first, that each data set senses the same underlying geological structure in terms of different material properties and, secondly, that two different material properties are correlated locally or globally throughout the entire target area. As a result, the distribution of limestone cavities can be estimated under the assumption that they are mostly filled with groundwater and clayey soils and have abnormally low levels of resistivity and density. The estimated distribution corresponds with the grouting, borehole imaging and monitoring data. In this example, it can be seen that the integration analysis of 2-D electrical resistivity and 3-D gravity methods is a very powerful tool for 3-D subsurface imaging and that the method can provide enhanced imaging capabilities for 3-D cavities.  相似文献   
102.
Summary   Comminution (crushing and grinding) of rock materials is energy-intensive and expensive. Much effort has been directed to improve the efficiency of conventional milling practice, but relatively little attention has been given to the potential benefits of blast-induced (extrinsic) damage on comminution processes. The objective of this research is to investigate the effect of shock-induced “crack-like” damage on rock properties for three petrologically distinct rock materials under laboratory conditions. In order to evaluate the effect of shock-induced damage, a quantitative measure of rock damage is needed. Shock loading of rock material was accomplished with an explosively driven split Hopkinson pressure bar. Laboratory measurements show that the average uniaxial compressive strengths for damaged specimens are slightly lower than those for intact specimens. Based on damage mechanics, the scalar damage variable () was experimentally determined as the relative reduction in ultrasonic wave velocity of damaged versus intact rock. increases as the shock energy dissipated in rock material increases. A crack density was determined by confocal image analysis. Measurements following shock loading indicate that ultrasonic wave velocity in rock partially recovers with time. Ultrasonic wave velocity and confocal image analysis may be useful in quantitatively assessing the internal crack-like damage in rock materials.  相似文献   
103.
Hydraulic conductivity (K) for an alluvial system in a riverbank filtration area in Changwon City, South Korea, has been studied using grain-size distribution, pumping and slug tests, and numerical modeling. The alluvial system is composed of layers: upper fine sand, medium sand, lower fine sand, and a highly conductive sand/gravel layer at the base. The geometric mean of K for the sand/gravel layer (9.89?×?10?4 m s?1), as determined by grain-size analyses, was 3.33 times greater than the geometric mean obtained from pumping tests (2.97?×?10?4 m s?1). The geometric mean of K estimates obtained from slug tests (3.08?×?10?6 m s?1) was one to two orders of magnitude lower than that from pumping tests and grain-size analyses. K estimates derived from a numerical model were compared to those derived from the grain-size methods, slug tests and pumping tests in order to determine the degree of deviation from the numerical model. It is considered that the K estimates determined by the slug tests resemble the uppermost part of the alluvial deposit, whereas the K estimates obtained by grain-size analyses and pumping tests are similar to those from the numerical model for the sand/gravel layer of the riverside alluvial system.  相似文献   
104.
In horizontally layered soils of different electrical properties, electrical potential distribution becomes complex and the obtained resistivity data may be limited in reflecting the actual soil profile. Thus the objective of this study was to identify the factors that affect resistivity measurement on the cone penetrometer and further investigate the sensitivity of measured resistivity to different types and concentrations of contaminants at the subsurface level. First, a theoretical resistivity equation was derived to provide a means of computing the geometric factor. The effective volume of measurement on the cone penetrometer was investigated and laboratory soil box tests verified the dominance of partially high resistivity regions within the effective volume of measurement over the apparent resistivity. Such effect was found to lead to possible discrepancies between the recorded resistivity data and the actual depth of measurement. Measurements on contaminated soil layers indicated that resistivity cones are efffective in delineating inorganic contaminants in soils of high water contents, and detecting NAPLs floating above the groundwater table provided that soils adjacent to the plume are not dry of water. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
105.
One uses the principle of flexural isostasy to represent the uplift of the ‘Seuil du Poitou’ in response to erosion. The model indicates that a different uplift of on the last five millions years resulted from an erosion paradoxically stronger in the crystalline basement than in the limestones bedrock. To cite this article: J.-C. Maurin, K. Renaud, C. R. Geoscience 334 (2002) 1149–1155.  相似文献   
106.
This paper uses Biot's poroelasticity approach to examine the consolidation behaviour of a rigid foundation with a frictionless base in contact with a poroelastic halfspace. The mathematical development of the mixed boundary value problem involves a set of dual integral equations in the Laplace transform domain which cannot be conveniently solved by employing conventional procedures. In this paper, a numerical solution is developed using a scheme where the contact normal stress is approximated by a discretized equivalent. The influence of limiting drainage boundary conditions at the entire surface of the halfspace on the degree of consolidation of the rigid circular foundation is investigated. The results obtained in this study are compared with the corresponding results given in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
107.
Seismic and geological information on the Lomonosov Ridge is considered with reference to drilling data obtained during the ACEX-302 expedition. A new zonation proposed for the composite section of the ridge sedimentary cover and based on marine microfossils (silicoflagellates and dinocysts) from several boreholes is correlated with biostratigraphic zones of Paleogene sections in northern West Siberia. Principal stages of the Arctic basin development in the Aptian-Cenozoic are defined in onshore and Lomonosov Ridge sections. Synchronous formation of sedimentary sequences in the ridge, an element of the Arctic basin, shelves, and epicontinental seas is established for the period under consideration.  相似文献   
108.
This study attempted to analyze flow duration in a basin using a method to estimate environmental flow developed by the International Water Management Institute, and simulate the effects of runoff characteristics unique to a river and flow variability due to basin developments on aquatic ecosystems. To do so, KModSim, a simulation model for basin-wide water distribution, was used to assess flow duration in the Geum River basin, one of the four major river basins in Korea, by environmental management class (EMC). Flow duration curves by EMC at Sutong and Gongju sites were derived on the basis of natural flow in the Geum River basin. As a result, they were found to be consistent with the results of previous studies. Time series of mean monthly flow data by EMC were plotted together with those of simulated flow data by reservoir operation scenario; Sutong and Gongju points both showed flow behaviors corresponding almost to “A” in EMC. In addition, the characteristics of habitats by species of fish were identified through monitoring fish habitat at the Sutong site, so that optimal ecological flow rate was estimated. For this purpose, relations between flow discharge and weighted usable area for Coreoleuciscus splendidus and Pseudopungtungia nigra were projected using physical habitat simulation system, and EMCs consistent with flow duration curves (estimated taking in-stream flow) were assessed. The results or findings reported in this study are expected to serve as basic data for making a plan to efficiently monitor and manage aquatic ecosystems in the Geum River basin.  相似文献   
109.
Estimation of Block Sizes for Rock Masses with Non-persistent Joints   总被引:2,自引:3,他引:2  
Summary  Discontinuities or joints in the rock mass have various shapes and sizes. Along with the joint orientation and spacing, the joint persistence, or the relative size of the joint, is one of the most important factors in determining the block sizes of jointed rock masses. Although the importance of joint persistence on the overall rock mass strength has long been identified, the impact of persistence on rock strength is in most current rock mass classification systems underrepresented. If joints are assumed to be persistent, as is the case in most designs, the sizes of the rock blocks tend to be underestimated. This can lead to more removable blocks than actually exist in-situ. In addition, a poor understanding of the rock bridge strength may lead to lower rock mass strengths, and consequently, to excessive expenditure on rock support. In this study, we suggest and verify a method for the determination of the block sizes considering joint persistence. The idea emerges from a quantitative approach to apply the GSI system for rock mass classification, in which the accurate block size is required. There is a need to statistically analyze how the distribution of rock bridges according to the combination of joint orientation, spacing, and persistence will affect the actual size of each individual block. For this purpose, we generate various combinations of joints with different geometric conditions by the orthogonal arrays using the distinct element analysis tools of UDEC and 3DEC. Equivalent block sizes (areas in 2D and volumes in 3D) and their distributions are obtained from the numerical simulation. Correlation analysis is then performed to relate the block sizes predicted by the empirical equation to those obtained from the numerical model simulation. The results support the concept of equivalent block size proposed by Cai et al. (2004, Int. J. Rock Mech. Min. Sci., 41(1), 3–19).  相似文献   
110.
The jet grouting technique was originally initiated in the UK and progressively developed following the needs for larger geometries, ease of implementation, economic rationality, and better mechanical properties. This paper presents a comprehensive review of the development and practice of jet grouting through some fundamental concepts and relevant case studies. Subsequently, a laboratory testing program is performed to investigate the factors affecting the efficacy of the twin grouting system. The principal objective of this study is to define the suitable conditions for the jet grouting efficacy regarding economic rationality as well as quality control. For the first phase, a particular emphasis is placed on the properties of jet columns, site geological conditions, implementation methods, and the justification of each selected treatment option, while the second phase mainly focuses on the unconfined compressive strength (UCS) tests. It follows that the mono-fluid jet grouting system presents a valuable flexibility in dealing with complex configurations; yet, the double- and triple-fluid systems are more indicated for cases of mass treatments for which large portions of space must be treated and overlapping is fundamentally important for the reliability of the treatment. Furthermore, it was established that the efficacy of the twin-jet method primarily relies on the proper adequacy of some critical parameters, namely, the cement content, the water-cement ratio, and cement slurry-water glass ratio. In spite of some uncertainties inherently related to the technique, the UCS test represents the quintessential laboratory index for evaluating the mechanical properties of grouted elements, deriving jet grouting efficacy and the economics of jet grouts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号