首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   798篇
  免费   44篇
  国内免费   13篇
测绘学   14篇
大气科学   45篇
地球物理   237篇
地质学   179篇
海洋学   61篇
天文学   140篇
自然地理   179篇
  2021年   10篇
  2020年   9篇
  2019年   15篇
  2018年   15篇
  2017年   13篇
  2016年   27篇
  2015年   20篇
  2014年   17篇
  2013年   44篇
  2012年   23篇
  2011年   31篇
  2010年   19篇
  2009年   47篇
  2008年   41篇
  2007年   33篇
  2006年   32篇
  2005年   32篇
  2004年   43篇
  2003年   26篇
  2002年   39篇
  2001年   28篇
  2000年   18篇
  1999年   13篇
  1998年   21篇
  1997年   21篇
  1996年   15篇
  1995年   8篇
  1994年   12篇
  1993年   12篇
  1992年   10篇
  1991年   23篇
  1990年   7篇
  1989年   7篇
  1988年   7篇
  1987年   10篇
  1986年   5篇
  1985年   15篇
  1984年   12篇
  1983年   6篇
  1982年   11篇
  1981年   9篇
  1979年   5篇
  1978年   3篇
  1977年   9篇
  1975年   7篇
  1974年   3篇
  1973年   4篇
  1970年   3篇
  1965年   2篇
  1924年   2篇
排序方式: 共有855条查询结果,搜索用时 0 毫秒
1.
A two‐dimensional, discrete‐element modelling technique is used to investigate the initiation and growth of detachment folds in sedimentary rocks above a weak décollement level. The model depicts the sedimentary rocks as an assemblage of spheres that obey Newton's equations of motion and that interact with elastic forces under the influence of gravity. Faulting or fracturing between neighbouring elements is represented by a transition from repulsive–attractive forces to solely repulsive forces. The sedimentary sequence is mechanically heterogeneous, consisting of intercalated layers of markedly different strengths and thicknesses. The interlayering of weak and strong layers within the sedimentary rocks promotes the localization of flexural flow deformation within the weak layers. Even with simple displacement boundary conditions, and straightforward interlayering of weak and strong layers, the structural geometries that develop are complex, with a combination of box, lift‐off and disharmonic detachment fold styles forming above the décollement. In detail, it is found that the modelled folds grow by both limb rotation and limb lengthening. The combination of these two mechanisms results in uplift patterns above the folds that are difficult, or misleading, to interpret in terms of simple kinematic models. Comparison of modelling results with natural examples and with kinematic models highlights the complexities of structural interpretation in such settings.  相似文献   
2.
Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt post-glacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.  相似文献   
3.
Three‐dimensional (3D) numerical modelling of fault displacement enables the building of geological models to represent the complex 3D geometry and geological properties of faulted sedimentary basins. Using these models, cross‐fault juxtaposition relationships are predicted in 3D space and through time, based on the geometries of strata that are cut by faults. Forward modelling of fault development allows a 3D prediction of fault‐zone argillaceous smear using a 3D application of the Shale Gouge Ratio. Numerical models of the Artemis Field, Southern North Sea, UK and the Moab Fault, Utah, USA are used to demonstrate the developed techniques and compare them to traditional one‐ and two‐dimensional solutions. These examples demonstrate that a 3D analysis leads to significant improvements in the prediction of fault seal, the analysis of the interaction of the sealing properties of multiple faults, and the interpretation of fault seal within the context of sedimentary basin geometry.  相似文献   
4.
The introduction of low-frequency radio arrays is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21-cm emission between a large H  ii region and the surrounding neutral intergalactic medium (IGM) will be the simplest and most easily interpreted signature. However, the highest redshift quasars known are thought to reside in an ionized IGM. Using a semi-analytic model we describe the redshifted 21-cm signal from the IGM surrounding quasars discovered using the i -drop-out technique (i.e. quasars at   z ∼ 6  ). We argue that while quasars at   z < 6.5  seem to reside in the post-overlap IGM, they will still provide valuable probes of the late stages of the overlap era because the light-travel time across a quasar proximity zone should be comparable to the duration of overlap. For redshifted 21-cm observations within a 32-MHz bandpass, we find that the subtraction of a spectrally smooth foreground will not remove spectral features due to the proximity zone. These features could be used to measure the neutral hydrogen content of the IGM during the late stages of reionization. The density of quasars at   z ∼ 6  is now well constrained. We use the measured quasar luminosity function to estimate the prospects for discovery of high-redshift quasars in fields that will be observed by the Murchison Widefield Array.  相似文献   
5.
6.
Global heat budget, plate tectonics and climatic change   总被引:1,自引:0,他引:1  
For the past 2000 Ma, the temperature of the Earth's surface has fluctuated around a mean similar to that of today, although individual locations have undergone long-term changes of ∼30°C at different times in different places. Water bodies absorb at least five times as much solar radiation as land surfaces, and ocean currents transport the excess heat absorbed in the tropics towards the poles. Changes in the distribution of land and sea due to plate tectonics explain the major temperature fluctuations (>25°C) around the globe in the last 350 Ma, and are first-order controls. Large-scale changes in ocean currents and thermohaline circulations are probably second-order controls (15–25°C). The Milankovitch orbital cycles are third-order controls producing variations in air temperature of the order of 10°C, while massive volcanic eruptions and changes in carbon dioxide are amongst the fourth-order controls producing minor perturbations (<5°C). The major climatic fluctuations are continuous but regional in effect and not global. Extraterrestrial factors may not cause major changes in climate when viewed from a geological perspective.  相似文献   
7.
8.
Partitioning of volatile chemicals among the gas, liquid, and solid phases during freezing of liquid water in clouds can impact trace chemical distributions in the troposphere and in precipitation. We describe here a numerical model of this partitioning during the freezing of a supercooled liquid drop. Our model includes the time-dependent calculation of the coupled processes of crystallization kinetics, heat transport, and solute mass transport, for a freezing hydrometeor particle. We demonstrate the model for tracer partitioning during the freezing of a 1000 μm radius drop on a 100 μm ice substrate, under a few ambient condition scenarios. The model effectively simulates particle freezing and solute transport, yielding results that are qualitatively and quantitatively consistent with previous experimental and theoretical work. Results suggest that the ice shell formation time is governed by heat loss to air and not by dendrite propagation, and that the location of ice nucleation is not important to freezing times or the effective partitioning of chemical solutes. Even for the case of nucleation at the center of the drop, we found that dendrites propagated rapidly to form surface ice. Freezing then proceeded from the outside in. Results also indicate that the solid-liquid interfacial surface area is not important to freezing times or the effective partitioning of chemical solutes, and that the rate aspects of trapping are more important than equilibrium solid-liquid partitioning to the effective partitioning resulting from freezing.  相似文献   
9.
We investigate the possibility that strong EUV lines observed with the Goddard Solar EUV Rocket Telescope and Spectrograph (SERTS) provide good proxies for estimating the total coronal flux over shorter wavelength ranges. We use coordinated SERTS and Yohkoh observations to obtain both polynomial and power-law fits relating the broad-band soft X-ray fluxes to the intensities of Fexvi 335 Ú and 361 Ú, Fexv 284 Ú and 417 Ú, and Mgix 368 Ú measured with SERTS. We found that the power-law fits best cover the full range of solar conditions from quiet Sun through active region, though not surprisingly the cooler Mgix 368 Ú line proves to be a poor proxy. The quadratic polynomial fits yield fair agreement over a large range for all but the Mgix line. However, the linear fits fail conspicuously when extrapolated into the quiet-Sun regime. The implications of this work for the Heii 304 Ú line formation problem are also briefly considered.  相似文献   
10.
The shore zones of the Hudson River, like those of many developed waterways, are highly varied, containing a mix of seminatural and highly engineered shores. Our goal was to document the biodiversity supported by different kinds of shore zones in the Hudson. We chose six common types of shore zones, three of them ??natural?? (sand, unconsolidated rock, and bedrock), and three of them engineered (riprap, cribbing, and bulkheads). We measured selected physical characteristics (shore zone width, exposure, substrate roughness and grain size, shoreline complexity) of three examples of each of these shore types, and also sampled communities of terrestrial plants, fishes, and aquatic and terrestrial invertebrates. Community composition of most taxa differed across shore types, and frequently differed between wide, sheltered shores and narrow, exposed shores. Alien plant species were especially well represented along engineered shores. Nevertheless, a great deal of variation in biological communities was not explained by our six-class categorization of shore zones or the physical variables that we measured. No single shore type supported the highest values of all kinds of biodiversity, but engineered shore zones (especially cribbing and bulkheads) tended to have less desirable biodiversity characteristics than ??natural?? shore zones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号