首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   922篇
  免费   35篇
  国内免费   2篇
测绘学   31篇
大气科学   81篇
地球物理   193篇
地质学   212篇
海洋学   74篇
天文学   281篇
综合类   2篇
自然地理   85篇
  2021年   11篇
  2020年   17篇
  2019年   14篇
  2018年   10篇
  2017年   19篇
  2016年   16篇
  2015年   18篇
  2014年   26篇
  2013年   70篇
  2012年   21篇
  2011年   33篇
  2010年   30篇
  2009年   42篇
  2008年   36篇
  2007年   33篇
  2006年   37篇
  2005年   21篇
  2004年   42篇
  2003年   25篇
  2002年   18篇
  2001年   18篇
  2000年   12篇
  1999年   18篇
  1998年   18篇
  1997年   14篇
  1996年   10篇
  1995年   11篇
  1994年   11篇
  1993年   11篇
  1992年   9篇
  1991年   8篇
  1990年   6篇
  1988年   7篇
  1987年   9篇
  1986年   12篇
  1985年   21篇
  1984年   17篇
  1983年   18篇
  1982年   13篇
  1981年   13篇
  1980年   17篇
  1979年   10篇
  1978年   10篇
  1977年   15篇
  1976年   7篇
  1975年   15篇
  1974年   21篇
  1973年   14篇
  1972年   9篇
  1971年   11篇
排序方式: 共有959条查询结果,搜索用时 15 毫秒
141.
142.
We present high resolution Doppler images of the short period (P = 0.362 d) contact binary AE Phe. Using least squares deconvolution, we make use of the information content of the several thousand lines in each échelle spectrum to obtain the necessary S/N and time resolution required to resolve individual starspot features. A single pair of rotationally broadened profiles (free of sidelobes due to blending) with a typical S/N of 3000 ‐ 4000 per spectrum is thus obtained. With 300 sec exposures we achieve a cadence of 350 sec which is equivalent to sampling the rotation phase every 4°. We derive images for four nights of data which reveal starspots at most latitudes on both components of the common envelope system. Individual starspots evolve significantly on very short timescales, of order one day; significantly faster than the week timescales found on active single stars and the Sun. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
143.
The Gediz (Ala?ehir) Graben is located in the highly tectonically active and seismogenic region of Western Turkey. The rivers upstream of the normal fault‐bounded graben each contain a non‐lithologic knickpoint, including those that drain through inferred fault segment boundaries. Knickpoint heights measured vertically from the fault scale with footwall relief and documented fault throw (vertical displacement). Consequently, we deduce these knickpoints were initiated by an increase in slip rate on the basin‐bounding fault, driven by linkage of the three main fault segments of the high‐angle graben bounding fault array. Fault interaction theory and ratios of channel steepness suggest that the slip rate enhancement factor on linkage was a factor of 3. We combine this information with geomorphic and structural constraints to estimate that linkage took place between 0.6 Ma and 1 Ma. Calculated pre‐ and post‐linkage throw rates are 0.6 and 2 mm/yr respectively. Maximum knickpoint retreat rates upstream of the faults range from 4.5 to 28 mm/yr, faster than for similar catchments upstream of normal faults in the Central Apennines and the Hatay Graben of Turkey, and implying a fluvial landscape response time of 1.6 to 2.7 Myr. We explore the relative controls of drainage area and precipitation on these retreat rates, and conclude that while climate variation and fault throw rate partially explain the variations seen, lithology remains a potentially important but poorly characterised variable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
144.
The Blue Ridge escarpment, located within the southern Appalachian Mountains of Virginia and North Carolina, forms a distinct, steep boundary between the lower‐elevation Piedmont and higher‐elevation Blue Ridge physiographic provinces. To understand better the rate at which this landform and the adjacent landscape are changing, we measured cosmogenic beryllium‐10 (10Be) in quartz separated from sediment samples (n = 50) collected in 32 streams and from three exposed bedrock outcrops along four transects normal to the escarpment, allowing us to calculate erosion rates integrated over 104–105 years. These basin‐averaged erosion rates (5.4–49 m Myr?1) are consistent with those measured elsewhere in the southern Appalachain Mountains and show a positive relationship between erosion rate and average basin slope. Erosion rates show no relationship with basin size or relative position of the Brevard fault zone, a fundamental structural element of the region. The cosmogenic isotopic data, when considered along with the distribution of average basin slopes in each physiographic province, suggest that the escarpment is eroding on average more rapidly than the Blue Ridge uplands, which are eroding more rapidly than the Piedmont lowlands. This difference in erosion rates by geomorphic setting suggests that the elevation difference between the uplands and lowlands adjacent to the escarpment is being reduced but at extremely slow rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
145.
146.
As mineral exploration seeks deeper targets, there will be a greater reliance on geophysical data and a better understanding of the geological meaning of the responses will be required, and this must be achieved with less geological control from drilling. Also, exploring based on the mineral system concept requires particular understanding of geophysical responses associated with altered rocks. Where petrophysical datasets of adequate sample size and measurement quality are available, physical properties show complex variations, reflecting the combined effects of various geological processes. Large datasets, analysed as populations, are required to understand the variations. We recommend the display of petrophysical data as frequency histograms because the nature of the data distribution is easily seen with this form of display. A petrophysical dataset commonly contains a combination of overlapping sub-populations, influenced by different geological factors. To understand the geological controls on physical properties in hard rock environments, it is necessary to analyse the petrophysical data not only in terms of the properties of different rock types. It is also necessary to consider the effects of processes such as alteration, weathering, metamorphism and strain, and variables such as porosity and stratigraphy. To address this complexity requires that much more supporting geological information be acquired than in current practice. The widespread availability of field portable instruments means quantitative geochemical and mineralogical data can now be readily acquired, making it unnecessary to rely primarily on categorical rock classification schemes. The petrophysical data can be combined with geochemical, petrological and mineralogical data to derive explanations for observed physical property variations based not only on rigorous rock classification methods, but also in combination with quantitative estimates of alteration and weathering. To understand how geological processes will affect different physical properties, it is useful to define three end-member forms of behaviour. Bulk behaviour depends on the physical properties of the dominant mineral components. Density and, to a lesser extent, seismic velocity show such behaviour. Grain and texture behaviour occur when minor components of the rock are the dominate controls on its physical properties. Grain size and shape control grain properties, and for texture properties the relative positions of these grains are also important. Magnetic and electrical properties behave in this fashion. Thinking in terms of how geological processes change the key characteristics of the major and minor mineralogical components allows the resulting changes in physical properties to be understood and anticipated.  相似文献   
147.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
148.
Physically based and spatially distributed modelling of catchment hydrology involves the estimation of block or whole-hillslope permeabilities. Invariably these estimates are derived by calibration against rainfall–runoff response. Rarely are these estimates rigorously compared with parameter measurements made at the small scale. This study uses a parametrically simple model, TOPMODEL, and an uncertainty framework to derive permeability at the catchment scale. The utility of expert knowledge of the internal catchment dynamics (i.e. extent of saturated area) in constraining parameter uncertainty is demonstrated. Model-derived estimates are then compared with core-based measurements of permeability appropriately up-scaled. The observed differences between the permeability estimates derived by the two methods might be attributed to the role of intermediate scale features (natural soil pipes). An alternative method of determining block permeabilities at the intermediate or hillslope scale is described. This method uses pulse-wave tests and explicitly incorporates the resultant effects of phenomena such as soil piping and kinematic wave migration. The study aims to highlight issues associated with parameterizing or validating distributed models, rather than to provide a definitive solution. The fact that the permeability distribution within the Borneo study catchment is comparatively simple, assists the comparisons. The field data were collected in terrain covered by equatorial rainforest. Combined field measurement and modelling programmes are rare within such environments. © 1998 John Wiley & Sons, Ltd.  相似文献   
149.
We report the first record of vertical rhizome growth in the temperate seagrass Zostera marina. In a population of Z. marina occurring on subtidal sand in the Novigrad Sea (Croatia), an area subject to episodic high sediment transport, collected plants of Z. marina showed vertical rhizomes with shorter and narrower inter‐nodes (mean length = 3.4 ± 1.5 SD mm, mean width = 1.9 ± 0.3 SD mm) than those recorded for horizontal rhizomes (mean length = 9.0 ± 3.5 SD mm, mean width = 2.8 ± 0.4 SD mm). Out of a sample of 1130 rhizome fragments, 288 (25.5%) were vertical. Repeated moderate burial events may have stimulated the production of vertical rhizomes, and the ability of Z. marina to produce vertical rhizomes may enable it to withstand moderate burial in this highly dynamic environment.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号