首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1466篇
  免费   64篇
  国内免费   17篇
测绘学   30篇
大气科学   166篇
地球物理   360篇
地质学   455篇
海洋学   127篇
天文学   268篇
综合类   1篇
自然地理   140篇
  2023年   7篇
  2022年   8篇
  2021年   25篇
  2020年   25篇
  2019年   21篇
  2018年   39篇
  2017年   35篇
  2016年   47篇
  2015年   34篇
  2014年   55篇
  2013年   71篇
  2012年   42篇
  2011年   83篇
  2010年   65篇
  2009年   90篇
  2008年   73篇
  2007年   68篇
  2006年   66篇
  2005年   66篇
  2004年   45篇
  2003年   66篇
  2002年   31篇
  2001年   30篇
  2000年   35篇
  1999年   25篇
  1998年   18篇
  1997年   18篇
  1996年   18篇
  1995年   17篇
  1994年   17篇
  1993年   18篇
  1992年   16篇
  1991年   15篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1987年   13篇
  1986年   15篇
  1985年   22篇
  1984年   25篇
  1983年   26篇
  1982年   27篇
  1981年   11篇
  1980年   24篇
  1979年   14篇
  1978年   13篇
  1977年   6篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
排序方式: 共有1547条查询结果,搜索用时 484 毫秒
261.
Fault surface roughness is a principal factor influencing earthquake mechanics, and particularly rupture initiation, propagation, and arrest. However, little data currently exist on fault surfaces at seismogenic depths. Here, we investigate the roughness of slip surfaces from the seismogenic strike-slip Gole Larghe Fault Zone, exhumed from ca. 10 km depth. The fault zone exploited pre-existing joints and is hosted in granitoid rocks of the Adamello batholith (Italian Alps). Individual seismogenic slip surfaces generally show a first phase of cataclasite production, and a second phase with beautifully preserved pseudotachylytes of variable thickness. We determined the geometry of fault traces over almost five orders of magnitude using terrestrial laser-scanning (LIDAR, ca. 500 to <1 m scale), and 3D mosaics of high-resolution rectified digital photographs (10 m to ca. 1 mm scale). LIDAR scans and photomosaics were georeferenced in 3D using a Differential Global Positioning System, allowing detailed multiscale reconstruction of fault traces in Gocad®. The combination of LIDAR and high-resolution photos has the advantage, compared with classical LIDAR-only surveys, that the spatial resolution of rectified photographs can be very high (up to 0.2 mm/pixel in this study), allowing for detailed outcrop characterization. Fourier power spectrum analysis of the fault traces revealed a self-affine behaviour over 3–5 orders of magnitude, with Hurst exponents ranging between 0.6 and 0.8. Parameters from Fourier analysis have been used to reconstruct synthetic 3D fault surfaces with an equivalent roughness by means of 2D Fourier synthesis. Roughness of pre-existing joints is in a typical range for this kind of structure. Roughness of faults at small scale (1 m to 1 mm) shows a clear genetic relationship with the roughness of precursor joints, and some anisotropy in the self-affine Hurst exponent. Roughness of faults at scales larger than net slip (>1–10 m) is not anisotropic and less evolved than at smaller scales. These observations are consistent with an evolution of roughness, due to fault surface processes, that takes place only at scales smaller or comparable to the observed net slip. Differences in roughness evolution between shallow and deeper faults, the latter showing evidences of seismic activity, are interpreted as the result of different weakening versus induration processes, which also result in localization versus delocalization of deformation in the fault zone. From a methodological point of view, the technique used here is advantageous over direct measurements of exposed fault surfaces in that it preserves, in cross-section, all of the structures which contribute to fault roughness, and removes any subjectivity introduced by the need to distinguish roughness of original slip surfaces from roughness induced by secondary weathering processes. Moreover, offsets can be measured by means of suitable markers and fault rocks are preserved, hence their thickness, composition and structural features can be characterised, providing an integrated dataset which sheds new light on mechanisms of roughness evolution with slip and concomitant fault rock production.  相似文献   
262.
Plastic debris is known to undergo fragmentation at sea, which leads to the formation of microscopic particles of plastic; the so called ‘microplastics’. Due to their buoyant and persistent properties, these microplastics have the potential to become widely dispersed in the marine environment through hydrodynamic processes and ocean currents. In this study, the occurrence and distribution of microplastics was investigated in Belgian marine sediments from different locations (coastal harbours, beaches and sublittoral areas).Particles were found in large numbers in all samples, showing the wide distribution of microplastics in Belgian coastal waters. The highest concentrations were found in the harbours where total microplastic concentrations of up to 390 particles kg−1 dry sediment were observed, which is 15-50 times higher than reported maximum concentrations of other, similar study areas.The depth profile of sediment cores suggested that microplastic concentrations on the beaches reflect the global plastic production increase.  相似文献   
263.
Earthquakes in central Italy, and in other areas worldwide, often nucleate within and rupture through carbonates in the upper crust. During individual earthquake ruptures, most fault displacement is thought to be accommodated by thin principal slip zones. This study presents detailed microstructural observations of the slip zones of the seismically active Tre Monti normal fault zone. All of the slip zones cut limestone, and geological constraints indicate exhumation from <2?km depth, where ambient temperatures are ?100°C. Scanning electron microscope observations suggest that the slip zones are composed of 100% calcite. The slip zones of secondary faults in the damage zone contain protocataclastic and cataclastic fabrics that are cross-cut by systematic fracture networks and stylolite dissolution surfaces. The slip zone of the principal fault has much more microstructural complexity, and contains a 2?C10?mm thick ultracataclasite that lies immediately beneath the principal slip surface. The ultracataclasite itself is internally zoned; 200?C300???m-thick ultracataclastic sub-layers record extreme localization of slip. Syn-tectonic calcite vein networks spatially associated with the sub-layers suggest fluid involvement in faulting. The ultracataclastic sub-layers preserve compelling microstructural evidence of fluidization, and also contain peculiar rounded grains consisting of a central (often angular) clast wrapped by a laminated outer cortex of ultra-fine-grained calcite. These ??clast-cortex grains?? closely resemble those produced during layer fluidization in other settings, including the basal detachments of catastrophic landslides and saturated high-velocity friction experiments on clay-bearing gouges. An overprinting foliation is present in the slip zone of the principal fault, and electron backscatter diffraction analyses indicate the presence of a weak calcite crystallographic preferred orientation (CPO) in the fine-grained matrix. The calcite c-axes are systematically inclined in the direction of shear. We suggest that fluidization of ultracataclastic sub-layers and formation of clast-cortex grains within the principal slip zone occurred at high strain rates during propagation of seismic ruptures whereas development of an overprinting CPO occurred by intergranular pressure solution during post-seismic creep. Further work is required to document the range of microstructures in localized slip zones that cross-cut different lithologies, and to compare natural slip zone microstructures with those produced in controlled deformation experiments.  相似文献   
264.
A zircon grain in an orthopyroxene–garnet–phlogopite–zircon–rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal–plastic deformation. The zircon grain records significant variations in titanium (Ti) from 2.6 to 30 ppm that corresponds to a difference in calculated Ti-in-zircon temperatures of over several hundred degrees Celsius. The highest Ti concentration is measured at subgrain centres (30 ppm), and Ti is variably depleted at low-angle boundaries (down to 2.6 ppm). Variations in cathodoluminescence coincide with the deformation microstructure and indicate localised, differential enrichment of rare earth elements (REE) at low-angle boundaries. Variable enrichment of U and Th and systematic increase of Th/U from 1.61 to 3.52 occurs at low-angle boundaries. Individual SHRIMP-derived U–Pb ages from more deformed zones (mean age of 1799 ± 40, n = 22) are systematically younger than subgrain cores (mean age of 1851 ± 65 Ma, n = 7), and indicate that open system behaviour of Ti–Th–U occurred shortly after zircon growth, prior to the accumulation of significant radiogenic Pb. Modelling of trace-element diffusion distances for geologically reasonable thermal histories indicates that the observed variations are ~ 5 orders of magnitude greater than can be accounted for by volume diffusion. The data are best explained by enhanced diffusion of U, Th and Ti along deformation-related fast-diffusion pathways, such as dislocations and low-angle (< 5°) boundaries. These results indicate chemical exchange between zircon and the surrounding matrix and show that Ti-in-zircon thermometry and U–Pb geochronology from deformed zircon may not yield information relating to the conditions and timing of primary crystallisation.  相似文献   
265.
Cross-correlation analysis was applied to events in the 2003 Lefkada Island, Greece, sequence in order to identify clusters of seismicity within the extensive aftershock sequence along a fault zone of approximately 100 km length. Data from the small-aperture TRISAR array, covering the first 2 days of aftershock activity, were used. Array-based waveform correlation has a great advantage over single channel correlation analysis in that the validity of waveform matches with relatively low correlation coefficients can be examined by checking the alignment of correlation traces on the different channels. The length of the fault zone leads inevitably to a great diversity in the waveforms, although a small number of clusters of very similar events emerge from the TRISAR data. Events which the correlation analysis had placed within the same cluster were listed in the ISC Bulletin with separations of up to tens of kilometres. This made it necessary to check the validity of the TRISAR clusters by applying the same procedure independently to the three-component stations of the National Seismographic Network of the National Observatory of Athens, located at local to regional distances from the aftershock area. Results suggest that array-based waveform correlation provides a robust tool both for identifying event clusters within large aftershock areas and for identifying situations in which bulletin event location estimates need re-evaluation.  相似文献   
266.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   
267.
Lessons Learned from 25 Years of Research at the MADE Site   总被引:2,自引:0,他引:2  
Field studies at well‐instrumented research sites have provided extensive data sets and important insights essential for development and testing of transport theories and mathematical models. This paper provides an overview of over 25 years of research and lessons learned at one of such field research sites on the Columbus Air Force Base in Mississippi, commonly known as the Macrodispersion Experiment (MADE) site. Since the mid‐1980s, field data from the MADE site have been used extensively by researchers around the world to explore complex contaminant transport phenomena in highly heterogeneous porous media. Results from field investigations and modeling analyses suggested that connected networks of small‐scale preferential flow paths and relative flow barriers exert dominant control on solute transport processes. The classical advection‐dispersion model was shown to inadequately represent plume‐scale transport, while the dual‐domain mass transfer model was found to reproduce the primary observed plume characteristics. The MADE site has served as a valuable natural observatory for contaminant transport studies where new observations have led to better understanding and improved models have sprung out analysis of new data.  相似文献   
268.
Bacterial sulfate reduction in marine sediments generally occurs in the presence of high millimolar concentrations of sulfate. Published data indicate that low sulfate concentrations may limit sulfate reduction rates below 0.2-2 mM. Yet, high sulfate reduction rates occur in the 1-100 μM range in freshwater sediments and at the sulfate-methane transition in marine sediments. Through a combination of 35S-tracer experiments, including initial velocity experiments and time course experiments, we searched for different sulfate affinities in the mixed community of sulfate reducers in a marine sediment. We supported the radiotracer experiments with a highly sensitive ion chromatographic technique for sulfate with a detection limit of 0.15 μM SO42− in marine pore water. Our results showed that high and low affinities for sulfate co-occur and that the applied experimental approach may determine the observed apparent half saturation constant, Km. Our experimental and model data both show that sulfate reduction in the studied marine sediment could be explained by two dominating affinities for sulfate: a low affinity with a mean half saturation constant, Km, of 430 μM SO42− and a high affinity with a mean Km of 2.6 μM SO42−. The high-affinity sulfate reduction was thermodynamically un-constrained down to <1 μM SO42−, both in our experiments and under in situ conditions. The reduction of radio-labeled sulfate was partly reversible due to concurrent re-oxidation of sulfide by Fe(III) and possibly due to a reversibility of the enzymatic pathway of sulfate reduction. A literature survey of apparent Km values for sediments and pure cultures is presented and discussed.  相似文献   
269.
In soils, mycorrhiza (microscopic fungal hypha) living in symbiosis with plant roots are the biological interface by which plants obtain, from rocks and organic matter, the nutrients necessary for their growth and maintenance. Despite their central role in soils, the mechanism and kinetics of mineral alteration by mycorrhiza are poorly constrained quantitatively. Here, we report in situ quantification of weathering rates from a mineral substrate, (0 0 1) basal plane of biotite, by a surface-bound hypha of Paxillus involutus, grown in association with the root system of a Scots pine, Pinus sylvestris. Four thin-sections were extracted by focused ion beam (FIB) milling along a single hypha grown over the biotite surface. Depth-profile of Si, O, K, Mg, Fe and Al concentrations were performed at the hypha-biotite interface by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX). Large removals of K (50-65%), Mg (55-75%), Fe (80-85%) and Al (75-85%) were observed in the topmost 40 nm of biotite underneath the hypha while Si and O are preserved throughout the depth-profile. A quantitative model of alteration at the hypha-scale was developed based on solid-state diffusion fluxes of elements into the hypha and the break-down/mineralogical re-arrangement of biotite. A strong acidification was also observed with hypha bound to the biotite surface reaching pH < 4.6. When consistently compared with the abiotic biotite dissolution, we conclude that the surface-bound mycorrhiza accelerate the biotite alteration kinetics between pH 3.5 and 5.8 to ∼0.04 μmol biotite m−2 h−1. Our current work reaffirms that fungal mineral alteration is a process that combines our previously documented bio-mechanical forcing with the μm-scale acidification mediated by surface-bound hypha and a subsequent chemical element removal due to the fungal action. As such, our study presents a first kinetic framework for mycorrhizal alteration at the hypha-scale under close-to-natural experimental conditions.  相似文献   
270.
This study shows that spatially and temporally recurring benthic macrofauna-habitat patterns validate the ecological relevance of habitat types to benthic macrofauna and suggest they can serve as elements in ecological periodic tables of benthic macrofaunal usage. We discovered patterns across nine habitat types (intertidal eelgrass [Zostera marina], dwarf eelgrass [Zostera japonica], oyster [Crassostrea gigas] ground culture, burrowing mud shrimp [Upogebia pugettensis], burrowing ghost shrimp [Neotrypaea californiensis], shell, sand, mud, and subtidal) on a variety of benthic macrofaunal community state variables in Grays Harbor, Washington, USA and compared them to those in Willapa Bay, Washington, USA. There were nominal differences in benthic macrofaunal Bray-Curtis similarity between all the habitats investigated except eelgrass and oyster in both estuaries. Across-habitat patterns on mean benthic macrofaunal species richness, abundance, biomass, abundance of deposit, suspension and facultative feeders, a dominance and a diversity index for the five habitats common to both studies were the same on a rank measurement scale: eelgrass ≈ oyster > mud shrimp > ghost shrimp ≈ subtidal. The patterns for most of the habitats and benthic macrofaunal measures were the same on a ratio measurement scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号