首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1433篇
  免费   64篇
  国内免费   17篇
测绘学   30篇
大气科学   163篇
地球物理   359篇
地质学   441篇
海洋学   126篇
天文学   259篇
综合类   1篇
自然地理   135篇
  2023年   7篇
  2022年   8篇
  2021年   25篇
  2020年   25篇
  2019年   21篇
  2018年   38篇
  2017年   35篇
  2016年   47篇
  2015年   32篇
  2014年   55篇
  2013年   70篇
  2012年   42篇
  2011年   82篇
  2010年   64篇
  2009年   90篇
  2008年   73篇
  2007年   67篇
  2006年   65篇
  2005年   60篇
  2004年   43篇
  2003年   66篇
  2002年   31篇
  2001年   30篇
  2000年   34篇
  1999年   24篇
  1998年   18篇
  1997年   18篇
  1996年   18篇
  1995年   16篇
  1994年   17篇
  1993年   18篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   8篇
  1988年   10篇
  1987年   13篇
  1986年   15篇
  1985年   22篇
  1984年   25篇
  1983年   25篇
  1982年   27篇
  1981年   11篇
  1980年   23篇
  1979年   14篇
  1978年   12篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1514条查询结果,搜索用时 234 毫秒
941.
942.
Previous studies have suggested that Marine Isotope Stage (MIS) 13, recognized as atypical in many paleoclimate records, is marked by the development of anomalously strong summer monsoons in the northern tropical areas. To test this hypothesis, we performed a multi-proxy study on three marine records from the tropical Indian Ocean in order to reconstruct and analyse changes in the summer Indian monsoon winds and precipitations during MIS 13. Our data confirm the existence of a low-salinity event during MIS 13 in the equatorial Indian Ocean but we argue that this event should not be considered as “atypical”. Taking only into account a smaller precession does not make it possible to explain such precipitation episode. However, when considering also the larger obliquity in a more complete orbitally driven monsoon “model,” one can successfully explain this event. In addition, our data suggest that intense summer monsoon winds, although not atypical in strength, prevailed during MIS 13 in the western Arabian Sea. These strong monsoon winds, transporting important moisture, together with the effect of insolation and Eurasian ice sheet, are likely one of the factors responsible for the intense monsoon precipitation signal recorded in China loess, as suggested by model simulations.  相似文献   
943.
Radiolabelled assays and compound-specific stable isotope analysis (CSIA) were used to assess methyl tert-butyl ether (MTBE) biodegradation in an unleaded fuel plume in a UK chalk aquifer, both in the field and in laboratory microcosm experiments. The 14C-MTBE radiorespirometry studies demonstrated widespread potential for aerobic and anaerobic MTBE biodegradation in the aquifer. However, δ13C compositions of MTBE in groundwater samples from the plume showed no significant 13C enrichment that would indicate MTBE biodegradation at the field scale. Carbon isotope enrichment during MTBE biodegradation was assessed in the microcosms when dissolved O2 was not limiting, compared with low in situ concentrations (2 mg/L) in the aquifer, and in the absence of O2. The microcosm experiments showed ubiquitous potential for aerobic MTBE biodegradation in the aquifer within hundreds of days. Aerobic MTBE biodegradation in the microcosms produced an enrichment of 7‰ in the MTBE δ13C composition and an isotope enrichment factor (ε) of −1.53‰ when dissolved O2 was not limiting. However, for the low dissolved O2 concentration of up to 2 mg/L that characterizes most of the MTBE plume fringe, aerobic MTBE biodegradation produced an enrichment of 0.5-0.7‰, corresponding to an ε value of −0.22‰ to −0.24‰. No anaerobic MTBE biodegradation occurred under these experimental conditions. These results suggest the existence of a complex MTBE-biodegrading community in the aquifer, which may consist of different aerobic species competing for MTBE and dissolved O2. Under low O2 conditions, the lower fractionating species have been shown to govern overall MTBE C-isotope fractionation during biodegradation, confirming the results of previous laboratory experiments mixing pure cultures. This implies that significant aerobic MTBE biodegradation could occur under the low dissolved O2 concentration that typifies the reactive fringe zone of MTBE plumes, without producing detectable changes in the MTBE δ13C composition. This observed insensitivity of C isotope enrichment to MTBE biodegradation could lead to significant underestimation of aerobic MTBE biodegradation at field scale, with an unnecessarily pessimistic performance assessment for natural attenuation. Site-specific C isotope enrichment factors are, therefore, required to reliably quantify MTBE biodegradation, which may limit CSIA as a tool for the in situ assessment of MTBE biodegradation in groundwater using only C isotopes.  相似文献   
944.
A high-resolution storm surge model of Apalachee Bay in the northeastern Gulf of Mexico is developed using an unstructured grid finite-volume coastal ocean model (FVCOM). The model is applied to the case of Hurricane Dennis (July 2005). This storm caused underpredicted severe flooding of the Apalachee Bay coastal area and upriver inland communities. Accurate resolution of complicated geometry of the coastal region and waterways in the model reveals processes responsible for the unanticipated high storm tide in the area. Model results are validated with available observations of the storm tide. Model experiments suggest that during Dennis, excessive flooding in the coastal zone and the town of St. Marks, located up the St. Marks River, was caused by additive effects of coincident high tides (~10–15% of the total sea-level rise) and a propagating shelf wave (~30%) that added to the locally wind-generated surge. Wave setup, the biggest uncertainty, is estimated on the basis of empirical and analytical relations. The Dennis case is then used to test the sensitivity of the model solution to vertical discretization. A suite of model experiments is performed with varying numbers of vertical sigma (σ) levels, with different distribution of σ-levels within the water column and a varying bottom drag coefficient. The major finding is that the storm surge solution is more sensitive to resolution within the velocity shear zone at mid-depths compared to resolution of the upper and bottom layer or values of the bottom drag coefficient.  相似文献   
945.
The equilibrium response of atmospheric circulation to the direct radiative effects of natural or anthropogenic aerosols is investigated using the Community Atmosphere Model (CAM3) coupled to two different ocean boundary conditions: prescribed climatological sea surface temperatures (SSTs) and a slab ocean model. Anthropogenic and natural aerosols significantly affect the circulation but in nearly opposite ways, because anthropogenic aerosols tend to have a net local warming effect and natural aerosols a net cooling. Aerosol forcings shift the Intertropical Convergence Zone and alter the strength of the Hadley circulation as found in previous studies, but also affect the Hadley cell width. These effects are due to meridional gradients in warming caused by heterogeneous net heating, and are stronger with interactive SST. Aerosols also drive model responses at high latitudes, including polar near-surface warming by anthropogenic aerosols in summer and an Arctic Oscillation (AO)-type responses in winter: anthropogenic aerosols strengthen wintertime zonal wind near 60°N, weaken it near 30°N, warm the troposphere, cool the stratosphere, and reduce Arctic surface pressure, while natural aerosols produce nearly opposite changes. These responses are shown to be due to modulation of stratospheric wave-driving consistent with meridional forcing gradients in midlatitudes. They are more pronounced when SST is fixed, apparently because the contrast in land-ocean heating drives a predominantly wavenumber-2 response in the northern hemisphere which is more efficient in reaching the stratosphere, showing that zonal heating variations also affect this particular response. The results suggest that recent shifts from reflecting to absorbing aerosol types probably contributed to the observed decadal variations in tropical width and AO, although studies with more realistic temporal variations in forcing would be needed to quantify this contribution.  相似文献   
946.
To study the time-dependent response of the Asian summer monsoon to obliquity forcing, we analyze a 284,000-year long transient simulation produced by a fully coupled global climate model (GCM) using a new phase mapping (PHASEMAP) approach. Here we focus on understanding the phase response of monsoonal circulation to insolation forcing at the Earth-orbital obliquity band (41 Kyr). Our results show that the East Asian summer monsoon (EASM) can be divided into two geographic regions: the North East Asian summer monsoon (NEASM) and the South East Asian summer monsoon (SEASM). The Indian summer monsoon (ISM) and the SEASM are in phase at the obliquity band, strengthened with an increase in obliquity from Obliquity minima (Omin) to Obliquity maxima (Omax). The NEASM is out of phase with the ISM and SEASM, weakened with an increase in obliquity from Omin to Omax. We hypothesize that the inverse phase between the NEASM and the ISM at the obliquity band results from an ISM–NEASM teleconnection linked to the formation mechanism of the Bonin High.  相似文献   
947.
Climate Dynamics - Convection-permitting models (CPMs) have been proven successful in simulating extreme precipitation statistics. However, when such models are used to study climate change,...  相似文献   
948.
Individuals and other entities move through space as a function of local characteristics of place, their internal behavioral models, and the topological structure of the underlying space. When a collection of locations (i.e. geotagged photos or other geotagged social media information) from a large number of individuals is assembled, it becomes possible to understand the interrelationship between the individuals and the space they occupy. This research systematically considers this interrelationship through an examination of the effect of the intersection of behavioral and spatial characteristics on individuals moving on street networks. The research illustrates how social media data, in combination with a biased random walker, can be used to understand and model the interaction of spatial structure and social‐environmental factors on influencing individuals' use of their environment. The biased walker offers a flexible approach to incorporate consideration of both social‐environmental and structural factors into a model and we demonstrate this through a case study wherein we are able to use the random walker to model the characteristics of Flickr users in New York City.  相似文献   
949.
High-latitude δ18O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring δ18O record (AD 1780–2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring δ18O-temperature signal. Over the instrumental period (AD 1892–2003), tree-ring δ18O explained 29 % of interannual variability in April–July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the δ18O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the δ18O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric δ18O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other δ18O records from this region. Our δ18O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.  相似文献   
950.
We use the NCEP/NCAR Reanalysis (NCEP) and the MPI/ECHAM5 general circulation model to drive the RegCM3 regional climate model to assess the ability of the models to reproduce the spatiotemporal aspects of the Pacific-North American teleconnection (PNA) pattern. Composite anomalies of the NCEP-driven RegCM3 simulations for 1982–2000 indicate that the regional model is capable of accurately simulating the key features (500-hPa heights, surface temperature, and precipitation) of the positive and negative phases of the PNA with little loss of information in the downscaling process. The basic structure of the PNA is captured in both the ECHAM5 global and ECHAM5-driven RegCM3 simulations. The 1950–2000 ECHAM5 simulation displays similar temporal and spatial variability in the PNA index as that of NCEP; however, the magnitudes of the positive and negative phases are weaker than those of NCEP. The RegCM3 simulations clearly differentiate the climatology and associated anomalies of snow water equivalent and soil moisture of the positive and negative PNA phases. In the RegCM3 simulations of the future (2050–2100), changes in the location and extent of the Aleutian low and the continental high over North America alter the dominant flow patterns associated with positive and negative PNA modes. The future projections display a shift in the patterns of the relationship between the PNA and surface climate variables, which suggest the potential for changes in the PNA-related surface hydrology of North America.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号