首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   30篇
  国内免费   3篇
测绘学   12篇
大气科学   37篇
地球物理   234篇
地质学   211篇
海洋学   41篇
天文学   97篇
综合类   6篇
自然地理   34篇
  2023年   1篇
  2022年   10篇
  2021年   13篇
  2020年   26篇
  2019年   19篇
  2018年   33篇
  2017年   27篇
  2016年   40篇
  2015年   28篇
  2014年   30篇
  2013年   30篇
  2012年   40篇
  2011年   53篇
  2010年   32篇
  2009年   36篇
  2008年   36篇
  2007年   24篇
  2006年   39篇
  2005年   24篇
  2004年   27篇
  2003年   16篇
  2002年   16篇
  2001年   9篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   9篇
  1994年   3篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有672条查询结果,搜索用时 15 毫秒
411.
The use of hard coastal-defence structures, like breakwaters and seawalls, is rapidly increasing to prevent coastal erosion. We compared low-shore assemblages between wave-protected and wave-exposed habitats on breakwaters along a sandy shore of Tuscany (North-Western Mediterranean). Assemblages were generally characterized by a low diversity of taxa, with space monopolized by Mytilus galloprovincialis and Corallina elongata on the seaward side of breakwaters and by filamentous algae on the landward side. Assemblages in wave-protected habitats were characterized by greater temporal stability than those in exposed habitats and supported non-indigenous macroalgae such as Caulerpa racemosa and Codium fragile ssp. tomentosoides. Hence, the introduction of hard coastal-defence structures in otherwise soft-bottom dominated areas, attracting native and exotic rocky-bottom species, should be of great concern for the conservation of marine biodiversity at local and regional scales and for the management of biological invasions.  相似文献   
412.
The evaluation of the accuracy or reasonableness of numerical models of groundwater flow is a complex task, due to the uncertainties in hydrodynamic properties and boundary conditions and the scarcity of good-quality field data. To assess model reliability, different calibration techniques are joined to evaluate the effects of different kinds of boundary conditions on the groundwater flow in a coastal multi-layered aquifer in southern Italy. In particular, both direct and indirect approaches for inverse modeling were joined through the calibration of one of the most uncertain parameters, namely the hydraulic conductivity of the karst deep hydrostratigraphic unit. The methodology proposed here, and applied to a real case study, confirmed that the selection of boundary conditions is among the most critical and difficult aspects of the characterization of a groundwater system for conceptual analysis or numerical simulation. The practical tests conducted in this study show that incorrect specification of boundary conditions prevents an acceptable match between the model response to the hydraulic stresses and the behavior of the natural system. Such effects have a negative impact on the applicability of numerical modeling to simulate groundwater dynamics in complex hydrogeological situations. This is particularly important for management of the aquifer system investigated in this work, which represents the only available freshwater resource of the study area, and is threatened by overexploitation and saltwater intrusion.  相似文献   
413.
Although general trends in transgressive to highstand sedimentary evolution of river‐mouth coastlines are well‐known, the details of the turnaround from retrogradational (typically estuarine) to aggradational–progradational (typically coastal/deltaic) stacking patterns are not fully resolved. This paper examines the middle to late Holocene eustatic highstand succession of the Po Delta: its stratigraphic architecture records a complex pattern of delta outbuilding and coastal progradation that followed eustatic stabilization, since around 7·7 cal kyr bp . Sedimentological, palaeoecological (benthic foraminifera, ostracods and molluscs) and compositional criteria were used to characterize depositional conditions and sediment‐dispersal pathways within a radiocarbon‐dated chronological framework. A three‐stage progradation history was reconstructed. First, as soon as eustasy stabilized (7·7 to 7·0 cal kyr bp ), rapid bay‐head delta progradation (ca 5 m year?1), fed mostly by the Po River, took place in a mixed, freshwater and brackish estuarine environment. Second, a dominantly aggradational parasequence set of beach‐barrier deposits in the lower highstand systems tract (7·0 to 2·0 cal kyr bp ) records the development of a shallow, wave‐dominated coastal system fed alongshore, with elongated, modestly crescent beaches (ca 2·5 m year?1). Third, in the last 2000 years, the development of faster accreting and more rapidly prograding (up to ca 15 m year?1) Po delta lobes occurred into 30 m deep waters (upper highstand systems tract). This study documents the close correspondence of sediment character with stratal distribution patterns within the highstand systems tract. Remarkable changes in sediment characteristics, palaeoenvironments and direction of sediment transport occur across a surface named the ‘A–P surface’. This surface demarcates a major shift from dominantly aggradational (lower highstand systems tract) to fully progradational (upper highstand systems tract) parasequence stacking. In the Po system, this surface also reflects evolution from a wave‐dominated to river‐dominated deltaic system. Identifying the A–P surface through detailed palaeoecological and compositional data can help guide interpretation of highstand systems tracts in the rock record, especially where facies assemblages and their characteristic geometries are difficult to discern from physical sedimentary structures alone.  相似文献   
414.
Observations of hundreds of supersoft X‐ray sources (SSSs) in external galaxies have shed light on the diversity of the class and on the natures of the sources. SSSs are linked to the physics of Type Ia supernovae and accretion‐induced collapse, ultraluminous X‐ray sources and black holes, the ionization of the interstellar medium, and tidal disruption by supermassive black holes. The class of SSSs has an extension to higher luminosities: ultraluminous SSSs have luminosities above 1039 erg s–1. There is also an extension to higher energies: quasisoft X‐ray sources (QSSs) emit photons with energies above 1 keV, but few or none with energies above 2 keV. Finally, a significant fraction of the SSSs found in external galaxies switch states between observations, becoming either quasisoft or hard. For many systems “supersoft” refers to a temporary state; SSSs are sources, possibly including a variety of fundamentally different system types, that pass through such a state. We review those results derived from extragalactic data and related theoretical work that are most surprising and that suggest directions for future research (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
415.
A climatic change was simulated transplanting samples of the lichens Evernia prunastri (L.) Ach. and Pseudevernia furfuracea (L.) Zopf v. furfuracea along a 1,400 m altitudinal gradient in the northern side of the island of Crete (Greece). The working hypothesis was that the photosynthetic performance (i.e. pigment content, chlorophyll degradation and photosynthetic efficiency) of transplanted lichens varies along the altitudinal gradient. The overall effect observed was a general depression of the photosynthetic performance along the gradient. Concentrations of chlorophyll a, chlorophyll b and carotenoids decreased with decreasing elevation and along with the hottest and driest months of the year, with chlorophyll b being the most sensitive parameter to dry conditions. Chlorophyll degradation decreased with increasing elevation. The exposure period was the main factor affecting photosynthetic efficiency, with lower values during summer months. We argued that the water content of lichen thalli is the most important factor determining differences in photosynthesis under the experimental conditions. This allowed to suggest that the lichen photosynthetic performance deserves further investigation as early biological indicator of atmospheric stress induced by dry conditions and, to a greater extent, for the assessment of the desertification risk in the arid Mediterranean environment.  相似文献   
416.
This paper gives a new insight into the linear dynamic behavior of one-storey eccentric systems, with particular attention devoted to provide a comprehensive physically-based formulation of the maximum corner displacement magnification, which involves three contributions (translational response, torsional response and their combination). It is shown that the largest magnifications, which mainly occur for the class of torsionally-flexible systems, are due to the translational contribution which is caused by the shift of the fundamental period of the eccentric system with respect to that of the equivalent not-eccentric system. A simplified method for the estimation of the maximum corner displacement under seismic excitation, based on the physical properties of the eccentric system, is finally proposed.  相似文献   
417.
In the convergence slope/coastal areas of Antarctica, a large fraction of snow is continuously eroded and exported by wind to the atmosphere and into the ocean. Snow transport observations from instruments and satellite images were acquired at the wind convergence zone of Terra Nova Bay (East Antarctica) throughout 2006 and 2007. Snow transport features are well-distinguished in satellite images and can extend vertically up to 200 m as first-order quantitatively estimated by driftometer sensor FlowCapt?. Maximum snow transportation occurs in the fall and winter seasons. Snow transportation (drift/blowing) was recorded for ~80% of the time, and 20% of time recorded, the flux is >10?2 kg m?2 s?1 with particle density increasing with height. Cumulative snow transportation is ~4 orders of magnitude higher than snow precipitation at the site. An increase in wind speed and transportation (~30%) was observed in 2007, which is in agreement with a reduction in observed snow accumulation. Extensive presence of ablation surface (blue ice and wind crust) upwind and downwind of the measurement site suggest that the combine processes of blowing snow sublimation and snow transport remove up to 50% of the precipitation in the coastal and slope convergence area. These phenomena represent a major negative effect on the snow accumulation, and they are not sufficiently taken into account in studies of surface mass balance. The observed wind-driven ablation explains the inconsistency between atmospheric model precipitation and measured snow accumulation value.  相似文献   
418.
Public interventions in support of public health and housing in developing countries could benefit from better understanding of spatial heterogeneity and anisotropy. Estimation of directional variation within geographically weighted regression (GWR) faces problems of local parameter instability, border effects and, if extended to non- spatial attributes, potential endogeneity. This study formulates a GWR model where anisotropy is filtered out based on information from directional variograms. Along with classical regressions, the approach is applied to investigate child anaemia and its associations with household characteristics, sanitation and basic infrastructure in 173 regions of sub-Saharan Africa. Based on ordinary least squares (OLS) results, anaemia prevalence rates are up to three times more responsive to child morbidity (related to malaria and other diseases) than to other covariates. GWR estimates provide similar indications, but also point to poor sanitation facilities as a cofactor of severe anaemia particularly in east and southern Africa. The anisotropy-adjusted GWR is spatially stationary in residuals, and its estimated local parameters are less collinear than GWR with no adjustment. However, similar explanatory power and lack of significant bias in parameters estimated by the latter suggest that directional variation is largely captured by modelled co-movements among the variables.  相似文献   
419.
The M w = 9.1 mega-thrust Sumatra–Andaman earthquake that occurred on December 26, 2004, was followed by a devastating tsunami that killed hundreds of thousands of people and caused catastrophic effects on human settlements and environments along many coasts of the Indian Ocean, where even countries very far from the source were affected. One of these cases is represented by the Republic of Seychelles, where the tsunami reached the region about 7 h after the earthquake and produced relevant damages, despite the country was more than 4,500 km far from the seismic source. In the present work, we present and discuss a study of the 2004 Sumatra tsunami by means of numerical simulations with the attention focused on the effects observed at the Seychelles Archipelago, a region never previously investigated with this approach. The case is interesting since these islands lay on a very shallow oceanic platform with steep slopes so as the ocean depth changes from thousands to few tens of meters over short distances, with significant effects on the tsunami propagation features: the waves are strongly refracted by the oceanic platform and the tsunami signal is modified by the introduction of additional frequencies. The study is used also to validate the UBO-TSUFD numerical code on a real tsunami event in the far field, and the results are compared with the available observations, i.e., the sea level time series recorded at the Pointe La Rue station, Mahé Island, and run-up measurements and inundation lines surveyed few weeks after the tsunami at Praslin Island, where the tsunami hit during low tide. Synthetic results are found in good agreement with observations, even though some of the observations remain not fully solved. Moreover, simulations have been run in high-tide condition since the 2004 Sumatra tsunami hitting at high tide can be taken as the worst-case scenario for the Seychelles islands and used for tsunami hazard and risk assessments.  相似文献   
420.
It has been well documented that following a major earthquake a substantial percentage of economic loss results from downtime of essential lifelines in and out of major urban centres. This has thus led to an improvement of both performance‐based seismic design philosophies and to the development of cost‐effective seismic structural systems capable of guaranteeing a high level of protection, low structural damage and reduced downtime after a design‐level seismic event. An example of such technology is the development of unbonded post‐tensioned techniques in combination with rocking–dissipating connections. In this contribution, further advances in the development of high‐performance seismic‐resistant bridge piers are achieved through the experimental validation of unbonded post‐tensioned bridge piers with external, fully replaceable, mild steel hysteretic dissipaters. The experimental response of three 1 : 3 scale unbonded, post‐tensioned cantilever bridge piers, subjected to quasi‐static and pseudo‐dynamic loading protocols, are presented and compared with an equivalently reinforced monolithic benchmark. Minimal physical damage is observed for the post‐tensioned systems, which exhibit very stable energy dissipation and re‐centring properties. Furthermore, the external dissipaters can be easily replaced if severely damaged under a major (higher than expected) earthquake event. Thus, negligible residual deformations, limited repair costs and downtime can be achieved for critical lifeline components. Satisfactory analytical–experimental comparisons are also presented as a further confirmation of the reliability of the design procedure and of the modelling techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号