排序方式: 共有95条查询结果,搜索用时 15 毫秒
21.
Stefania Sica Angelo Dello Russo Federica Rotili Armando Lucio Simonelli 《Natural Hazards》2014,71(3):1913-1935
Subsurface cavities or stiff inclusions represent mechanical discontinuities for seismic waves propagating in soils. They modify the propagation pattern of seismic waves and alter soil response in correspondence to the ground level or building foundations. In the literature, different analytical and numerical solutions have been proposed to account for the effect of underground cavities or inclusions on the motion generated by P, S or R waves. In these former studies, the subsoil was assimilated to a homogeneous, isotropic and linear elastic halfspace containing one or more cavities. In the present study, the effect of subsurface cavities on ground motion amplification has been analysed accounting for soil stiffness degradation and associated damping increase with increasing levels of shear strains, a fundamental aspect of soil behaviour under earthquakes. The analysed model was inspired to a real case represented by the village of Castelnuovo (Italy), which during the 2009 Abruzzo earthquake suffered huge damage. The main shock (6 April 2009) caused the collapse of 50 % of the whole built environment. The historical centre of Castelnuovo rises on a hill. In its subsoil, there are many cavities with roofs 2–3 m below the ground level. The longitudinal NW–SE section of the hill has been investigated by 2D nonlinear site response analyses. A preliminary site response analysis was performed without modelling cavities, to identify ground motion amplification due to mere stratigraphic and topographic factors. The numerical model was later refined inserting: (1) a single cavity below the hilltop, (2) multiple cavities placed below the ground surface of the hill and (3) multiple cavities filled with concrete (inclusions). The performed study highlights the important role exerted by underground cavities on the ground motion computed at the hill surface. This effect should be properly considered for both microzonation studies and the correct determination of the seismic actions on specific buildings. 相似文献
22.
Meng Ding Ya-Peng Zhang Yong-Jie Zhang Yuan-Peng Wang Tie-Kuang Dong Antonio De Benedittis Paolo Bernardini Fang Fang Yao Li Jie Liu Peng-Xiong Ma Zhi-Yu Sun Valentina Gallo Stefania Vitillo Zhao-Min Wang Yu-Hong Yu Chuan Yue Qiang Yuan Yong Zhou Yun-Long Zhang 《天文和天体物理学研究(英文版)》2019,(3):145-154
The DArk Matter Particle Explorer(DAMPE) is a space-borne apparatus for detecting the highenergy cosmic-ray-like electrons, γ-rays, protons and heavy ions. The Plastic Scintillator Detector(PSD)is the top-most sub-detector of the DAMPE. The PSD is designed to measure the charge of incident highenergy particles and it also serves as a veto detector for discriminating γ-rays from charged particles. In this paper, a PSD on-orbit calibration procedure is described, which includes the five steps of pedestal, dynode correlation, response to minimum-ionizing particles, light attenuation function and energy reconstruction.A method for reconstructing the charge of incident high energy cosmic-ray particles is introduced. The detection efficiency of each PSD strip is verified to be above 99.5%; the total efficiency of the PSD for charged particles is above 99.99%. 相似文献
23.
Absorption and fluorescence of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measurements were performed during three oceanographic surveys in 1994 in the southern Baltic Sea (Polish area of the Baltic Proper). DOC was measured both by high-temperature catalytic oxidation (HTCO) and low-temperature oxidation (LTO) conventional persulphate methods. CDOM fluorescence was shown to be highly correlated with absorption, with the same regression parameters, despite the seasonal change in different hydrographic conditions and the fluorescence quantum yield variations (1.23 ± 0.07 in April and 0.97 ± 0.12 in September). The results show a good correlation between the optical parameters and DOC although ˜ 70% of the DOC does not display significant absorption in the UV-visible range (350–750 nm). The non-absorbing DOC measured with HTCO method appears unaffected by seasonal changes. Consequently, total DOC can be predicted by optical methods using remote sensing techniques. The non-absorbing DOC measured by LTO method varies from 62% (April) to 76% (September), which implies that there is requirement for estimates on a seasonal basis. 相似文献
24.
Local Circulation Diurnal Patterns and Their Relationship with Large-Scale Flows in a Coastal Area of the Tyrrhenian Sea 总被引:1,自引:0,他引:1
Igor Petenko Giangiuseppe Mastrantonio Angelo Viola Stefania Argentini Lucia Coniglio Paolo Monti Giovanni Leuzzi 《Boundary-Layer Meteorology》2011,139(2):353-366
In order to characterise the local low-level circulation in the Tyrrhenian Sea coastal area near Rome, the wind field observed
by conventional anemometers, Doppler sodar, and rawinsonde has been analysed. The prevailing diurnal behaviour of wind speed
and direction as a function of season was highlighted, and the existence of two different patterns of the local circulation,
mainly due to land and sea breezes and to the drainage flow from the mouth of the Tiber valley, revealed. The comparison between
the low-level circulation and synoptic flow allowed us to determine the influence of the large-scale flow on nocturnal currents
that are observed at the Pratica di Mare site and the way that wind direction evolves during the day. Numerical simulations
are consistent with experimental data and depict the main features of the low-level wind field in the area. 相似文献
25.
HASSET: a probability event tree tool to evaluate future volcanic scenarios using Bayesian inference
Event tree structures constitute one of the most useful and necessary tools in modern volcanology for assessment of hazards from future volcanic scenarios (those that culminate in an eruptive event as well as those that do not). They are particularly relevant for evaluation of long- and short-term probabilities of occurrence of possible volcanic scenarios and their potential impacts on urbanized areas. In this paper, we introduce Hazard Assessment Event Tree (HASSET), a probability tool, built on an event tree structure that uses Bayesian inference to estimate the probability of occurrence of a future volcanic scenario and to evaluate the most relevant sources of uncertainty from the corresponding volcanic system. HASSET includes hazard assessment of noneruptive and nonmagmatic volcanic scenarios, that is, episodes of unrest that do not evolve into volcanic eruption but have an associated volcanic hazard (e.g., sector collapse and phreatic explosion), as well as unrest episodes triggered by external triggers rather than the magmatic system alone. Additionally, HASSET introduces the Delta method to assess precision of the probability estimates, by reporting a 1 standard deviation variability interval around the expected value for each scenario. HASSET is presented as a free software package in the form of a plug-in for the open source geographic information system Quantum Gis (QGIS), providing a graphically supported computation of the event tree structure in an interactive and user-friendly way. We also include further in-depth explanations for each node together with an application of HASSET to Teide-Pico Viejo volcanic complex (Spain). 相似文献
26.
27.
28.
Willy Tinner Jacqueline F.N. van Leeuwen Daniele Colombaroli Elisa Vescovi W.O. van der Knaap Paul D. Henne Salvatore Pasta Stefania D'Angelo Tommaso La Mantia 《Quaternary Science Reviews》2009,28(15-16):1498-1510
We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests (Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic (Ficus carica–Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000–6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilex–O. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region. 相似文献
29.
Giampietro Casasanta Ilaria Pietroni Igor Petenko Stefania Argentini 《Boundary-Layer Meteorology》2014,151(3):597-608
The mixing-layer height is estimated using measurements from a high resolution surface-layer sodar run at the French-Italian station of Concordia at Dome C, Antarctica during the summer 2011–2012. The temporal and spatial resolution of the sodar allows the monitoring of the mixing-layer evolution during the whole diurnal cycle, i.e. a very shallow nocturnal boundary layer followed by a typical daytime growth. The behaviour of the summer mixing-layer height, variable between about 10- and 300 m, is analyzed as a function of the mean and turbulent structure of the boundary layer. Focusing on convective cases only, the retrieved values are compared with those calculated using a one-dimensional prognostic equation. The role of subsidence is examined and discussed. We show that the agreement between modelled and experimental values significantly increases if the subsidence is not kept fixed during the day. A simple diagnostic equation, which depends on the time-averaged integral of the near-surface turbulent heat flux, the background static stability and the buoyancy parameter, is proposed and evaluated. The diagnostic relation performance is comparable to that of the more sophisticated prognostic model. 相似文献
30.
Vegetated, shallow groundwater environments typically have high environmental and economic value. A sound understanding of the complex interactions and feedbacks between surface vegetation and groundwater resources is crucial to managing and maintaining healthy ecosystems while responding to human needs. A vegetated shallow groundwater environment was modelled using the software HYDRUS 2D to investigate the effects of several combinations of soil type and root distributions on shallow groundwater resources. Three rainfall regimes coupled to both natural and anthropogenically affected groundwater conditions were used to investigate the effect that combinations of four soil types and five root distributions can have on (a) groundwater level drops, (b) groundwater depletion, (c) groundwater recharge and (d) water stress conditions. Vegetation with roots distributed across the whole unsaturated zone and vegetation with dimorphic root systems (i.e. roots having larger concentrations both near the surface and the capillary fringe) behaved differently from vegetation growing roots mainly near the saturated zone. Specifically, vegetation with roots in the unsaturated zone caused water‐table drops and groundwater depletions that were half the amount due to deep‐rooted vegetation. Vegetation with a large portion of roots near the soil surface benefited from rainfall and was less vulnerable to water‐table lowering; as such, the fraction of the total area of roots affected by water stress conditions could be 40% smaller than in the case with deep‐rooted vegetation. However, roots uniformly distributed in the unsaturated zone could halve groundwater recharge rates observed in bare soils. Our analysis provided insights that can enable the formulation of site‐ and purpose‐specific management plans to respond to both human and ecosystem water requirements. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献