首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   62篇
  国内免费   15篇
测绘学   50篇
大气科学   154篇
地球物理   220篇
地质学   409篇
海洋学   47篇
天文学   91篇
综合类   2篇
自然地理   74篇
  2023年   6篇
  2022年   7篇
  2021年   23篇
  2020年   29篇
  2019年   25篇
  2018年   54篇
  2017年   30篇
  2016年   53篇
  2015年   35篇
  2014年   49篇
  2013年   63篇
  2012年   54篇
  2011年   63篇
  2010年   54篇
  2009年   78篇
  2008年   58篇
  2007年   41篇
  2006年   49篇
  2005年   39篇
  2004年   37篇
  2003年   31篇
  2002年   15篇
  2001年   18篇
  2000年   15篇
  1999年   12篇
  1998年   18篇
  1997年   11篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1987年   5篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1971年   1篇
  1970年   1篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
  1964年   1篇
排序方式: 共有1047条查询结果,搜索用时 31 毫秒
921.
The Twannberg iron meteorite is one out of only six members of the group IIG. The combined noble gas and radionuclide data obtained in this new systematic study indicate that Twannberg with its ~570 recently recovered specimens was a large object with a preatmospheric radius in the range of ~2 m, which corresponds to ~250 × 103 kg. The cosmic‐ray exposure age for Twannberg is 182 ± 45 Ma. The most surprising result is the long terrestrial age of Tterr =  ka, which is unexpected considering the humid conditions in Switzerland. However, this age is in accord with glaciation events, indicating that the less shielded samples from Mt. Sujet were found close to the position of the original strewn field, whereas the samples from Gruebmatt and Twannbach, which are from more shielded positions, were glacially transported to the east–northeast during the second last ice age (185–130 ka ago) from an original position west of Mt. Sujet.  相似文献   
922.
923.
This study applies an optimized phytoscreening method to locate a chlorinated ethene plume discharging into a stream. To evaluate the conditions most suitable for successful phytoscreening, trees along the stream bank were monitored through different seasons with different environmental conditions and hence different uptake/loss scenarios. Vinyl chloride (VC) as well as cis‐dichloroethylene (cis‐DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) were detected in the trees, documenting that phytoscreening is a viable method to locate chlorinated ethene plumes, including VC, discharging to streams. The results reveal, that phytoscreening for VC is more sensitive to environmental conditions affecting transpiration than for the other chlorinated ethenes detected. Conditions leading to higher groundwater uptake by transpiration than contaminant loss by diffusion from the tree trunks are optimal (e.g., low relative humidity, plentiful hours of sunshine and an intermediate air temperature). Additionally, low precipitation prior to the sampling event is beneficial, as uptake of infiltrating precipitation dilutes the concentration in the trees. All chlorinated ethenes were sensitive to dilution by clean precipitation and in some months, this resulted in no detection of contaminants in the trees at all. Under optimal environmental conditions the tree cores allowed detection of chlorinated solvents and their metabolites in the underlying groundwater. Whereas, for less ideal conditions there was a risk of no detection of the more volatile VC. This study is promising for the future applicability of phytoscreening to locate shallow groundwater contamination with the degradation products of chlorinated solvents.  相似文献   
924.
The seismic K-Horizon is the key to gaining understanding on the deep supercritical geothermal rocks in Southern Tuscany. The K-Horizon is hosted in metamorphic rocks, which cause strong seismic wavefield scattering resulting in a poor signal-to-noise ratio. Our study aims to reveal high-resolution seismic images of the K-Horizon below a geothermal field in Southern Tuscany, using an advanced three-dimensional seismic depth imaging approach. The key seismic pre-processing steps in the time domain include muting a large amount of persistent noise based on the statistical analysis of the seismic amplitudes, and tomostatics technique to correct for static effects. We carried out seismic depth imaging using Kirchhoff Pre-Stack Depth Migration and Fresnel Volume Migration techniques. Each migration technique was tested with constant and heterogeneous three-dimensional velocity models. Due to the difficulties in determining emergent angles for this low signal-to-noise ratio data set, the migration results with the heterogeneous three-dimensional velocity model show less coherent reflections compared to the migration results using the constant velocity model. Both velocity models however lead to relatively the same structure and depth of the K-Horizon, indicating the similarity of the average velocities along the wave propagation paths in both velocity models. With both velocity models Fresnel Volume Migration yields the K-Horizon with better reflection coherency and higher signal-to-noise ratio than standard Kirchhoff Pre-Stack Depth Migration. Nevertheless, both migration techniques have been able to reveal the K-Horizon with relatively high resolution and provide a reliable basis for geothermal rock characterization as well as steering of the first geothermal well penetrating the K-Horizon.  相似文献   
925.
The injection of CO2 at the Ketzin pilot CO2 storage site started in June 2008 and ended in August 2013. During the 62 months of injection, a total amount of about 67 kt of CO2 was injected into a saline aquifer. A third repeat three‐dimensional seismic survey, serving as the first post‐injection survey, was acquired in 2015, aiming to investigate the recent movement of the injected CO2. Consistent with the previous two time‐lapse surveys, a predominantly west–northwest migration of the gaseous CO2 plume in the up‐dip direction within the reservoir is inferred in this first post‐injection survey. No systematic anomalies are detected through the reservoir overburden. The extent of the CO2 plume west of the injection site is almost identical to that found in the 2012 second repeat survey (after injection of 61 kt); however, there is a significant decrease in its size east of the injection site. Assessment of the CO2 plume distribution suggests that the decrease in the size of the anomaly may be due to multiple factors, such as limited vertical resolution, CO2 dissolution, and CO2 migration into thin layers, in addition to the effects of ambient noise. Four‐dimensional seismic modelling based on dynamic flow simulations indicates that a dynamic balance between the newly injected CO2 after the second repeat survey and the CO2 migrating into thin layers and being dissolved was reached by the time of the first post‐injection survey. In view of the significant uncertainties in CO2 mass estimation, both patchy and non‐patchy saturation models for the Ketzin site were taken into consideration.  相似文献   
926.
927.
In a previous work we developed GISwaps, a novel method for geospatial decision-making based on Even Swaps. In this paper, we present the results of an evaluation of a visualization framework integrated with this method, implemented within a decision support system. This evaluation is based on two different studies. In the quantitative study, 15 student participants used GISwaps with no visual features, and 15 participants used GISwaps with the integrated visual framework, as the tool in a solar farm site location case study. The results of the quantitative evaluation show positive impact of the visualization in terms of increased coherency in trade-offs. The results also show a statistically significant difference in average trade-off values between the groups, with users from the non-visual group setting on average 20% higher trade-off values compared with the users in the visual group. In the qualitative study, we had one expert in GIS, two experts in decision-making and two experts in solar energy as a focus user group. Data in this study were obtained by observations and semi-structured interviews with the participants. The impact of the visualization framework was assessed positively by all participants in the expert group.  相似文献   
928.
This study aims to characterize urban spatial structure with respect to its multidimensionality. Using an encompassing data set of socioeconomic variables, as well as variables pertaining to the built environment, accessibility and land use, we suggest a quantitatively based urban (sub-) center typology. The fine-grained spatial scale of 1 km2 grid cells permits a higher spatial resolution than that used in most previous studies. Our suggested typology is two-layered: a “macro layer” based on cluster analyses sheds light on urban spatial configurations. A corresponding threshold-based “micro layer” identifies distinctive types of centers and subcenters at the local level. The application of this multi-scale and multivariate typology to four German city regions indicates both the core cities’ morphological dominance and the formation of subcenters with distinct profiles of regional economic importance, land use patterns and urban form. However, a substantial degree of spatial dispersion is observed because much activity is located in non-central locations.  相似文献   
929.
Zhang  Yihuai  Lebedev  Maxim  Smith  Gregory  Jing  Yu  Busch  Andreas  Iglauer  Stefan 《Natural Resources Research》2020,29(3):1787-1800

Characterization of coal micro-structure and the associated rock mechanical properties are of key importance for coal seam exploration, coal bed methane development, enhanced coal bed methane production and CO2 storage in deep coal seams. Considerable knowledge exists about coal chemical properties, but less is known about the nanoscale to the micro-scale structure of coals and how they change with coal strength across coal ranks. Thus, in this study, 3D X-ray micro-computed tomography (with a voxel size of 3.43 µm) and nano-indentation tests were conducted on coal samples of different ranks from peat to anthracite. The micro-structure of peats showed a well-developed pore system with meso- and micro-pores. The meso-pores essentially disappear with increasing rank, whereas the micro-pores persist and then increase past the bituminous rank. The micro-fracture system develops past the peat stage and by sub-bituminous ranks and changes into larger and mature fracture systems at higher ranks. The nano-indentation modulus showed the increasing trend from low- to high-rank coal with a perfect linear relationship with vitrinite reflectance and is highly correlated with carbon content as expected.

  相似文献   
930.
The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to ∼500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at ∼160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号