首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
地球物理   5篇
地质学   22篇
海洋学   10篇
自然地理   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   5篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
排序方式: 共有39条查询结果,搜索用时 421 毫秒
11.
The dissolution and surface complexation of a non-stoichiometric hydroxyapatite (Ca8.4(HPO4)1.6(PO4)4.4(OH)0.4), (HAP) was studied in the pH range 3.5-10.5, at 25 °C in 0.1 M Na(Cl). The results from well-equilibrated batch experiments, potentiometric titrations, and zeta-potential measurements were combined with information provided by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The information from the analyses was used to design an equilibration model that takes into account dissolution, surface potential, solution and surface complexation, as well as possible phase transformations. The results from the XPS measurements clearly show that the surface of the mineral has a different composition than the bulk and that the Ca/P ratio of the surface layer is 1.4 ± 0.1. This ratio was also found in solution in the batches equilibrated at low pH where the dominating reaction is dissolution. In the batches equilibrated at near neutral pH values, however, the Ca/P ratio in solution attains values as high as 25, which is due to re-adsorption of phosphate ions to the HAP surface. The total concentration of protons as well as the total concentration of dissolved calcium and phosphate in solution were used to calculate a model for the dissolution and surface complexation of HAP. The constant capacitance model was applied in designing the following surface complexation model:
  相似文献   
12.
The hydrolysis of silicic acid, Si(OH)4, was studied in a simplified seawater medium (0.6 M Na(Cl)) at 25°C. The measurements were performed as potentiometric titrations (hydrogen electrode) in which OH? was generated coulometrically. The total concentration of Si(OH)4, B, and log[H+] were varied within the limits 0.00075 ? B ? 0.008 M and 2.5 ? -log[H+] ? 11.7, respectively. Within these ranges the formation of SiO(OH)3? and SiO2(OH)22? with formation constants log β?11(Si(OH)4 ? SiO(OH)3? + H+) = ?9.472 ±0.002 and log β?21(Si(OH)4 ? SiO2(OH)22? + 2H+) = ?22.07 ± 0.01 was established. With B > 0.003 M polysilicate complexes are formed, however, with -log[H+] ? 10.7 their formation does not significantly affect the evaluated formation constants. Data were analyzed with the least squares computer program LETAGROPVRID.  相似文献   
13.
14.
15.
    
  相似文献   
16.
The hydrolysis of silicic acid, Si(OH)4, was studied in a simplified seawater medium (0.6 M Na(Cl)) at 25°C. The measurements were performed as potentiometric titrations (hydrogen electrode) in which OH was generated coulometrically. The total concentration of Si(OH)4, B, and log[H+] were varied within the limits 0.00075 B 0.008 M and 2.5 -log[H+] 11.7, respectively. Within these ranges the formation of SiO(OH)3 and SiO2(OH)22− with formation constants log β−11(Si(OH)4 SiO(OH)3 + H+) = −9.472 ±0.002 and log β−21(Si(OH)4 SiO2(OH)22− + 2H+) = −22.07 ± 0.01 was established. With B > 0.003 M polysilicate complexes are formed, however, with -log[H+] 10.7 their formation does not significantly affect the evaluated formation constants. Data were analyzed with the least squares computer program LETAGROPVRID.  相似文献   
17.
The uptake of atmospheric carbon dioxide in the water transported over the Bering–Chukchi shelves has been assessed from the change in carbon-related chemical constituents. The calculated uptake of atmospheric CO2 from the time that the water enters the Bering Sea shelf until it reaches the northern Chukchi Sea shelf slope (1 year) was estimated to be 86±22 g C m−2 in the upper 100 m. Combining the average uptake per m3 with a volume flow of 0.83×106 m3 s−1 through the Bering Strait yields a flux of 22×1012 g C year−1. We have also estimated the relative contribution from cooling, biology, freshening, CaCO3 dissolution, and denitrification for the modification of the seawater pCO2 over the shelf. The latter three had negligible impact on pCO2 compared to biology and cooling. Biology was found to be almost twice as important as cooling for lowering the pCO2 in the water on the Bering–Chukchi shelves. Those results were compared with earlier surveys made in the Barents Sea, where the uptake of atmospheric CO2 was about half that estimated in the Bering–Chukchi Seas. Cooling and biology were of nearly equal significance in the Barents Sea in driving the flux of CO2 into the ocean. The differences between the two regions are discussed. The loss of inorganic carbon due to primary production was estimated from the change in phosphate concentration in the water column. A larger loss of nitrate relative to phosphate compared to the classical ΔN/ΔP ratio of 16 was found. This excess loss was about 30% of the initial nitrate concentration and could possibly be explained by denitrification in the sediment of the Bering and Chukchi Seas.  相似文献   
18.
19.
    
  相似文献   
20.
Equilibrium reactions involving Cu(II) and As(V) have been studied with respect to formation of complexes in aqueous solutions as well as formation of solid phases. Potentiometric titrations performed at 25 °C (I = 0.1 M Na(Cl)) and at different Cu to As ratios gave no evidence for the existence of Cu(II) arsenate complexes in solution below the pH of the precipitation boundaries (pH ≈ 4), irrespective of the Cu to As ratio and pH. Mixing of solutions of Cu(II) and As(V) at different proportions and adjusting pH to values ranging from 4 to 9 resulted in precipitation of five different solid phases. The elemental composition of the solids was determined using X-ray Photoelectron Spectroscopy, and Environmental Scanning Microscopy-Field Emission Gun equipped with an energy dispersive spectroscopy detector. The average Cu/As ratio was determined by dissolving the solids. Total soluble concentrations of the components Cu(II) and As(V), as well as the basicity of the solid phases were determined by analysis of aqueous solutions. Based upon these experimental data the stoichiometric composition of the solid phases and their stability were determined. The resulting equilibrium model includes the solid phases Cu3(AsO4)2, Cu3(AsO4)(OH)3, Cu2(AsO4)(OH), Cu5Na(HAsO4)(AsO4)3 and Cu5Na2AsO4)4, where Cu5Na(HAsO4)(AsO4)3 and Cu5Na2(AsO4)4 have not been reported previously. In 0.1 M Na(Cl), Na+ was found to be a significant component in two of the solid phases. The Cu5Na2(AsO4)4 was formed in weakly alkaline conditions with pNa < 2.5. Stability constants for all solid phases have been determined. Distribution diagrams as well as predominance area (pNa-pH) diagrams are presented to illustrate stability fields of the different solid phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号