首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
测绘学   6篇
大气科学   1篇
地球物理   36篇
地质学   9篇
海洋学   2篇
天文学   4篇
自然地理   3篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
41.
最小二乘谱及其在超导重力观测数据分析中的应用   总被引:2,自引:1,他引:2  
运用投影理论和基于向量空间中最小二乘平差原理,介绍了最小二乘谱分析方法,给出了最小二乘谱的计算公式。利用加拿大超导重力观测数据实例,讨论了最小二乘谱分析的策略和步骤。  相似文献   
42.
43.
Abstract. The prawn Penaeus kerathurus completes its life cycle in Amvrakikos Gulf. The reasons for not entering the open sea depend on the status of biotic and abiotic factors of the gulf. The migratory movements of the species in the gulf are described by a simple square model, in each corner of which, the wintering, spawning, nursery, and recruitment area exist. The wintering area is located below the 25m isobath and wintering period lasts from late December to late March. Spermatophores on females are observed throughout the year but the highest percentages between April and August. The spawning season begins late in spring and continues through the summer. The spawning area is located below the 10m isobath, mainly around 25m. The nursery area of Penaeus kerathurus is in shallow waters near river estuaries, and the temporal limits were determined to be between mid-summer and mid-autumn. Finally, the recruitment area is located near the nursery area, with recruitment taking place in autumn, while the major stock renewal is restricted to winter.  相似文献   
44.
Coulomb stress changes associated with the strong earthquakes that occurred since 1904 in Sichuan and Yunnan provinces of China are investigated. The study area comprises the most active seismic fault zones in the Chinese mainland and suffers from both strong and frequent events. The tectonic regime of this rhombic-shaped area is affected by the eastern extrusion of the Tibetan highland due to the collision of Eurasian Plate against the Indian lithospheric block along the Himalayan convergent zone. This movement is accommodated on major strike-slip intraplate fault zones that strike in an E-W direction. The gradual 90° clockwise rotation of the faults in the study area contributes to the complexity of the stress field. The seismic hazard assessment in this region is attempted by calculating the change of the Coulomb Failure Function (?CFF) arising from both the coseismic slip of strong events (MS≥6.5) and the stress built-up by continuous tectonic loading on major regional faults. At every step of the stress evolutionary model an examination of possible triggering of each next strong event is made and the model finally puts in evidence the fault segments that apt to fail in an impending strong event, thus providing fu-ture seismic hazard evaluation.  相似文献   
45.
A detailed investigation of microseismicity and fault plane solutions are used to determine the current tectonic activity of the prominent zone of seismicity near Samos Island and Kusadasi Bay. The activation of fault populations in this complex strike-slip and normal faulting system was investigated by using several thousand accurate earthquake locations obtained by applying a double-difference location method and waveform cross-correlation, appropriate for areas with relatively small seismogenic structures. The fault plane solutions, determined by both moment tensor waveform inversions and P-wave first motion polarities, reveal a clear NS trending extension direction, for strike slip, oblique normal and normal faults. The geometry of each segment is quite simple and indicates planar dislocations gently dipping with an average dip of 40–45°, maintaining a constant dip through the entire seismogenic layer, down to 15 km depth.  相似文献   
46.
Spatial and temporal evolution of the stress field in the seismically active and well-monitored area of the western Gulf of Corinth, Greece, is investigated. The highly accurate and vast regional catalogues were used for inverting seismicity rate changes into stress variation using a rate/state-dependent friction model. After explicitly determining the physical quantities incorporated in the model (characteristic relaxation time, fault constitutive parameters, and reference seismicity rates), we looked for stress changes across space and over time and their possible association with earthquake clustering and fault interactions. We focused our attention on the Efpalio doublet of January 2010 (M = 5.5 and M = 5.4), with a high aftershock productivity, and attempted to reproduce and interpret stress changes prior to and after the initiation of this seismicity burst. The spatial distribution of stress changes was evaluated after smoothing the seismological data by means of a probability density function (PDF). The inverted stress calculations were compared with the calculations derived from an independent approach (elastic dislocation model) and this comparison was quantified. The results of the two methods are in good agreement (up to 80 %) in the far field, with the inversion technique providing more robust results in the near field, where they are more sensitive to the uncertainties of coseismic slip distribution. It is worth mentioning that the stress inversion model proved to be a very sensitive stress meter, able to detect even small stress changes correlated with spatio–temporal earthquake clustering. Data analysis was attempted from 1975 onwards to simulate the stress changes associated with stronger earthquakes over a longer time span. This approach revealed that only M > 5.5 events induce considerable stress variations, although in some cases there was no evidence for such stress changes even after an M > 5.5 earthquake.  相似文献   
47.
The 2014 Kefalonia earthquake sequence started on 26 January with the first main shock (MW6.1) and aftershock activity extending over 35 km, much longer than expected from the causative fault segment. The second main shock (MW6.0) occurred on 3 February on an adjacent fault segment, where the aftershock distribution was remarkably sparse, evidently encouraged by stress transfer of the first main shock. The aftershocks from the regional catalog were relocated using a 7-layer velocity model and station residuals, and their distribution evidenced two adjacent fault segments striking almost N-S and dipping to the east, in full agreement with the centroid moment tensor solutions, constituting segments of the Kefalonia Transform Fault (KTF). The KTF is bounded to the north by oblique parallel smaller fault segments, linking KTF with its northward continuation, the Lefkada Fault.  相似文献   
48.
The least-squares wavelet analysis, an alternative to the classical wavelet analysis, was introduced in order to analyze unequally spaced and non-stationary time series exhibiting components with variable amplitude and frequency over time. There are a few methods such as cross-wavelet transform and wavelet coherence that can analyze two time series together. However, these methods cannot generally be used to analyze unequally spaced and non-stationary time series with associated covariance matrices that may have trends and/or datum shifts. A new method of analyzing two time series together, namely the least-squares cross-wavelet analysis, is developed and applied to study the disturbances in the gravitational gradients observed by GOCE satellite that arise from plasma flow in the ionosphere represented by Poynting flux. The proposed method also shows its outstanding performance on the Westford–Wettzell very long baseline interferometry baseline length and temperature series.  相似文献   
49.
The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in \({\vert }0.4{\vert }\) and \({\vert }0.18{\vert }\) mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号