首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   6篇
  国内免费   2篇
测绘学   3篇
大气科学   23篇
地球物理   55篇
地质学   107篇
海洋学   37篇
天文学   66篇
自然地理   30篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   15篇
  2011年   14篇
  2010年   9篇
  2009年   20篇
  2008年   14篇
  2007年   16篇
  2006年   22篇
  2005年   13篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   11篇
  1999年   5篇
  1998年   10篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   14篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1967年   3篇
  1948年   2篇
排序方式: 共有321条查询结果,搜索用时 15 毫秒
11.
12.
A calculation of the equilibrium charge acquired by interstellar grains is given, which takes account of polarization charges that are induced in a grain by incident ions and electrons.Both metal and dielectric grains are considered and photoionization of the latter grains by UV radiation is taken into account where necessary. It is found that the inclusion of the polarization charges in the calculation is only important in gas clouds where the mean charge on a grain is low (<1e); that is, for HI regions and dense molecular clouds. In such clouds, the effect of the polarization charges is to increase the amount of negative charge acquired by a grain. A discussion is given concerning the validity of the classical electrostatic theory employed in the paper for small grains of radius 10–6 cm, and some astrophysical consequences of the modification of the grain charge by polarization effects are considered.  相似文献   
13.
Giant landslides are significant hazards associated with many active volcanic edifices. We describe a similar feature on ancient (>4 Ma) volcanic deposits subject to active tectonism. The landslide is approximately 3 km long by 1 km wide, with an estimated depth of 400 m. Side margins are straight and parallel, mimicking regional structure; narrow valleys incised down these margins provide low-strength side-release surfaces. Between these is a giant slump consisting of at least four, largely intact, discrete blocks that have moved down-dip a distance of >500 m. A series of flows with areal extents ranging from 0.01 to 0.5 km2 extends from the front of the failure. The materials represent an eroded sequence of andesite flows on the flanks of a stratovolcano. These have undergone two phases of hydrothermal alteration, and are deeply weathered to low-density (1040±80 kg m−3) silt (59%) and clay (35%) materials with strength properties typical of weathered silts (c=26±3 kN m−2; φ=42±8°). The size and location of this landslide preclude detailed geotechnical investigation of the failure. The worth of numerical stability analysis as an alternative technique in assessing the nature of the failure and hence the risk it poses to nearby communities is investigated. Sensitivity analysis identified likely conditions under which initial failure may have occurred: analyses for sensitivity to strength and earthquake acceleration needed conversion to critical combinations (F=1.0) of water table and strength/acceleration to remove the overriding influence of water table fluctuations. Failure was likely initiated either by a high water table level (83-84%), or some combination of intensity VII-IX earthquake waves together with water table heights of 40-80%. A general hazard assessment indicates that the risk associated with creep and catastrophic failure of the main mass is small, whereas the risk from flow failures near the toe of the landslide may be high. Important parameters (hydrological regime, flow failure morphology, age of initiation, and rates of movement) requiring closer investigation are identified. Development of a model is crucial to assessing the hazard associated with a feature such as that described here. With limited resources, a detailed stability analysis is a powerful tool as an initial stage in hazard analysis.  相似文献   
14.
East-west-trending Mesozoic magnetic anomalies M2 through M22 have been identified in the northern Mozambique Basin. These anomalies are best matched by sea floor created at 50°S trending N120°E and spreading at a rate of around 1.5 cm/yr. The northward increase in age inferred from the identifications of these anomalies are compatible with observed decrease in the “reliable” heat flow values from 1.4 to 1.1 μcal/cm2 s to the north in the basin. The anomalies terminate in the southern part of the Mozambique Channel against a magnetic quiet zone to the north. Both the Mozambique Basin anomalies and those recently observed off Antarctica are strong evidence in favour of a Gondwanaland reconstruction that places Dronning Maud Land against southern Mozambique, and a late Jurassic or older separation between Africa and Antarctica.  相似文献   
15.
Porphyroclasts of relatively strong minerals in mylonites commonly have an internal monoclinic shape symmetry defined by tails of dynamically recrystallized material. The geometry of a porphyroclast and its tails, called a ‘porhyroclast system’, can serve as a valuable indicator of the sense of vorticity. Porphyroclast systems have been divided into σ- and δ-types on the basis of the geometry of the tails. σ-Types have wedge-shaped recrystallized tails whose median lines lie on opposite sides of a reference plane parallel to the tails and containing the symmetry axis for the system. σ-Types are further subdivided into a σa-types, in which the porphyroclast is isolated in a relatively homogeneous matrix, and σb-types, in which the porphyroclast system is associated with a shear band foliation in the matrix. δ-Types typically have narrow recrystallized tails whose median lines cross the reference plane adjacent to the porphyroclast. Consequently, embayments of matrix material occur adjacent to the porphyroclasts and the tails display characteristic bends.A porphyroclast system in a mylonite develops when the relatively weak dynamically recrystallized grain aggregate in the porphyroclast mantle changes its shape due to non-coaxial flow in the adjacent matrix. This behaviour has been modelled in shear box experiments. Passive marker lines around rigid cylinders embedded in silicone putty were subjected to simple shear. The experiments were modified to simulate a change in recrystallization rate (R) with respect to rate of deformation (γ) by decreasing the diameter of the rigid cylinder during deformation at variable rates. The ratio R/γ appears to be one of the most important factors in determining which porphyroclast system will develop. At high R/γ values, flow of recrystallized material away from the porphyroclast is continuously appended by the production of new grains and wedge-shaped σa-type tails develop. At low R/γ values, relatively few new grains are added to the tails which become thinned and deflected by drag due to the spinning motion of the porphyroclast. In addition, most porphyroclast systems at low shear strains are of σa-type or lack monoclinic symmetry, whereas δ-types are only developed at high shear strain values. Complex porphyroclast systems, characterized by two generations of tails, are observed in many of the natural and model shear zones studied and may form due to fluctuating R/γ. Conditions that allow isolated σa- and δ-type porphyroclast systems to be used as sense of vorticity indicators are: the systems should have a monoclinic shape symmetry; matrix grain size should be small with respect to porphyroclast size; matrix fabric should be homogeneous; deformation history should be simple, and observations should be made on sections normal to the inferred bulk vorticity vector for the mylonite.  相似文献   
16.
To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre‐scale bars vary within a multi‐kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre‐scale bars from the Río Paraná, Argentina. The investigated bars are located between 30 km upstream and 540 km downstream of the Río Paraná – Río Paraguay confluence, where a significant volume of fine‐grained suspended sediment is introduced into the network. Bar‐scale cross‐stratified sets, with lengths and widths up to 600 m and thicknesses up to 12 m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar‐scale sets are found on top of finer‐grained ripple‐laminated bar‐trough deposits. Bar‐scale sets make up as much as 58% of the volume of the deposits in small, incipient mid‐channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Río Paraná is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small‐scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large‐scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Río Paraguay. Relative to other controls on downstream fining, the tributary input of fine‐grained suspended material from the Río Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5 m of mid‐channel bars shows: (i) an increase in the abundance and thickness (up to metre‐scale) of laterally extensive (hundreds of metres) fine‐grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar‐trough deposits and a corresponding decrease in bar‐scale cross‐strata (<10%). The thalweg deposits of the Río Paraná are composed of dune sets, even directly downstream from the Río Paraguay where the upper channel deposits are dominantly fine‐grained. Thus, the change in sedimentary facies due to a tributary point‐source of fine‐grained sediment is primarily expressed in the composition of the upper bar deposits.  相似文献   
17.
18.
Urban effects of Chennai on sea breeze induced convection and precipitation   总被引:2,自引:0,他引:2  
Doppler radar derived wind speed and direction profiles showed a well developed sea breeze circulation over the Chennai, India region on 28 June, 2003. Rainfall totals in excess of 100 mm resulted from convection along the sea breeze front. Inland propagation of the sea breeze front was observed in radar reflectivity imagery. High-resolution MM5 simulations were used to investigate the influence of Chennai urban land use on sea breeze initiated convection and precipitation. A comparison of observed and simulated 10m wind speed and direction over Chennai showed that the model was able to simulate the timing and strength of the sea breeze. Urban effects are shown to increase the near surface air temperature over Chennai by 3.0K during the early morning hours. The larger surface temperature gradient along the coast due to urban effects increased onshore flow by 4.0m s−1. Model sensitivity study revealed that precipitation totals were enhanced by 25mm over a large region 150 km west of Chennai due to urban effects. Deficiency in model physics related to night-time forecasts are addressed.  相似文献   
19.
本文以三板块构造模式解释江西省成矿作用的发展。认为中朝、扬子、华南三板块的边缘类似于安第斯型,它们与辛普森等人研究过的英国加里东地区、海西地区的岩浆作用和成矿作用完全可以对比。  相似文献   
20.
Large‐scale soft‐sediment deformation structures occur within fluvial sandstone bodies of the Upper Cretaceous Wahweap Formation in the Kaiparowits basin, southern Utah, USA. These structures represent an exceptional example of metre‐scale fault‐proximal, seismogenic load structures in nearly homogenous sandstones. The load structures consist of two types: large‐scale load casts and wedge‐shaped load structures. Large‐scale load casts penetrate up to 4·5 m into the underlying sandstone bed. Wedge‐shaped load structures include metre‐scale, parallel, sub‐vertical features and decimetre‐scale features along the periphery of the large‐scale load casts or other wedge‐shaped load structures. Wedge‐shaped load structures contain well‐developed, medial cataclastic shear deformation bands. All load structures contain pervasive well‐defined millimetre‐thick to centimetre‐thick internal laminae, oriented parallel to the outside form of the load structures and asymptotic to deformation bands. Both types of load structures formed because of an inverted density profile, earthquake‐triggered liquefaction and growth of irregularities (a Rayleigh–Taylor instability) on the sandstone–sandstone erosional contact. The internal laminae and deformation bands formed during deformation and clearly demonstrate polyphase deformation, recording a transition from liquefied to hydroplastic to brittle modes of deformation. Decimetre‐scale wedge‐shaped load structures on the edge of the large‐scale load casts probably formed towards the end of a seismic event after the sediment dewatered and increased the frictional contact of grains enough to impart strength to the sands. Metre‐scale wedge‐shaped load structures were created as the tips of downward foundering sediments were driven into fractures, which widened incrementally with seismic pulsation. With each widening of the fracture, gravity and a suction effect would draw additional sediment into the fracture. Superimposed laminae indicate a secondary syndeformational origin for internal laminae, probably by flow‐generated shearing and vibrofluidization mechanisms. Large‐scale and wedge‐shaped load structures, polyphase deformation and secondary laminae may characterize soft‐sediment deformation in certain fault‐proximal settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号