首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1613篇
  免费   66篇
  国内免费   38篇
测绘学   47篇
大气科学   125篇
地球物理   312篇
地质学   618篇
海洋学   103篇
天文学   383篇
综合类   10篇
自然地理   119篇
  2024年   5篇
  2023年   5篇
  2022年   9篇
  2021年   41篇
  2020年   36篇
  2019年   39篇
  2018年   47篇
  2017年   49篇
  2016年   56篇
  2015年   50篇
  2014年   51篇
  2013年   80篇
  2012年   63篇
  2011年   78篇
  2010年   82篇
  2009年   116篇
  2008年   86篇
  2007年   102篇
  2006年   87篇
  2005年   58篇
  2004年   82篇
  2003年   55篇
  2002年   57篇
  2001年   51篇
  2000年   41篇
  1999年   37篇
  1998年   36篇
  1997年   14篇
  1996年   12篇
  1995年   21篇
  1994年   14篇
  1992年   15篇
  1991年   8篇
  1989年   10篇
  1987年   13篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   6篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1978年   4篇
  1977年   5篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1971年   5篇
  1970年   4篇
  1969年   5篇
排序方式: 共有1717条查询结果,搜索用时 15 毫秒
911.
The coast of southeast Africa is dominated by sandy beaches that tend to be confined within log‐spiral or headland‐bound embayments. Investigations using serendipitous air imagery data set have been previously undertaken and conclusions drawn about the stability of the coast. We show that conclusions drawn from this data, with respect to the high water mark (HWM) position are fraught with errors, which include tidal state, pressure regime, beach slope, high‐swell erosion, seasonal and multi‐annual changes. We highlight and discuss these sources of error, together with their magnitudes. The most significant of these are the high‐swell, seasonal and multi‐annual variations. From case studies we show that the seasonal beach rotation and long‐term beach width variation are responsible for tens of metres of unaccounted HWM variation, 30 to 50 m is common, with maximums reaching 60 to 100 m. Overall the southeast African coastline appears to be in a state of long‐term dynamic equilibrium. There is no evidence of any sea‐level rise‐forced transgression in the coastal sediment budget, despite sea‐level rise (SLR). If such a signal is, in fact present, it is lost within the beach width variation. Some southeast African coastal reaches are suffering chronic erosion, but these are related to anthropogenic impacts. The extreme difficulty of placing a HWM, with any temporal validity on this coast precludes the routine use of the Bruun Rule. Although no transgressive signature is found, there is evidence of a decreasing coastal sand budget as a result of anthropogenic or natural climate change, or both. This decrease in the coastal sand volume is likely to result in increased future erosion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
912.
A rising exposure to flood risk is a predicted consequence of increased development in vulnerable areas and an increase in the frequency of extreme weather events due to climate change. In the face of this challenge, a continued reliance on engineered at‐a‐point flood defences is seen as both unrealistic and undesirable. The contribution of ‘soft engineering’ solutions (e.g. riparian forests, wood in rivers) to integrated, catchment scale flood risk management has been demonstrated at small scales but not larger ones. In this study we use reduced complexity hydrological modelling to analyse the effects of land use and channel changes resulting from river restoration upon flood flows at the catchment scale. Results show short sections of river‐floodplain restoration using engineered logjams, typical of many current restoration schemes, have highly variable impacts on catchment‐scale flood peak magnitude and so need to be used with caution as a flood management solution. Forested floodplains have a more general impact upon flood hydrology, with areas in the middle and upper catchment tending to show reductions in peak magnitude at the catchment outflow. The most promising restoration scenarios for flood risk management are for riparian forest restoration at the sub‐catchment scale, representing 20–40% of the total catchment area, where reductions in peak magnitude of up to 19% are observed through de‐synchronization of the timings of sub‐catchment flood waves. Sub‐catchment floodplain forest restoration over 10–15% of total catchment area can lead to reductions in peak magnitude of 6% at 25 years post‐restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
913.
Groundwater catchment boundaries and their associated groundwater catchment areas are typically assumed to be fixed on a seasonal basis. We investigated whether this was true for a highly permeable carbonate aquifer in England, the Berkshire and Marlborough Downs Chalk aquifer, using both borehole hydrograph data and a physics‐based distributed regional groundwater model. Borehole hydrograph data time series were used to construct a monthly interpolated water table surface, from which was then derived a monthly groundwater catchment boundary. Results from field data showed that the mean annual variation in groundwater catchment area was about 20% of the mean groundwater catchment area, but interannual variation can be very large, with the largest estimated catchment size being approximately 80% greater than the smallest. The flow in the river was also dependent on the groundwater catchment area. Model results corroborated those based on field data. These findings have significant implications for issues such as definition of source protection zones, recharge estimates based on water balance calculations and integrated conceptual modelling of surface water and groundwater systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
914.
Traditionally, approaches to account for the effect of the boundary roughness of a gravel‐bed river have used a grain‐size index of the bed surface as a surrogate for hydraulic resistance. The use of a single grain‐size does not take into account the spatial heterogeneity in the bed surface and how this heterogeneity imparts resistance on the flow, nor the way in which this relationship changes with variables such as flow stage. A new technique to remotely quantify hydraulic resistance is proposed. It is based on measuring the dynamics of a river's water surface and relating this to the actual hydraulic resistance created by a rough sediment boundary. The water surface dynamics are measured using a new acoustic technique, grazing angle sound propagation (GRASP). This proposed method to measure hydraulic resistance is based on a greater degree of physical reasoning, and this is discussed in the letter. By measuring acoustically the temporal dynamics of turbulent water surfaces over a water‐worked gravel bed in a laboratory flume, a dependency is demonstrated between the temporal variation in the reflected acoustic pressure and measured hydraulic resistance. It is shown that the standard deviation in acoustic pressure decreases with increasing hydraulic resistance. This is shown to apply for a range of relative submergences and bed slopes that are typical of gravel‐bed rivers. This remote sensing technique is both rapid and inexpensive, and has the potential to be applied to natural river channels and to other environmental turbulent flows, such as overland flows. A whole new class of low‐cost, remote and non‐intrusive instruments could be developed as a result and used in a wide range of hydraulic and hydrological applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
915.
Sediment fingerprinting has been widely used to distinguish discrete sediment sources; however, application to intra-storm sediment source variability has received relatively little focus despite the benefit being long recognized. In this investigation, sediment fingerprinting was applied to a 53-hr storm event sampled hourly to determine sediment source dynamics throughout the event. Sediment sources were differentiated using 16 variables, and source contribution determined using Bayesian and Frequentist mixing models for comparison. Both models provided comparable source predictions for the dominant source estimates and the general temporal pattern. The Frequentist model appeared to exhibit some unreliable values coinciding with low GOF and attributed to inherent model structure. The Bayesian model showed higher uncertainty, likely due to the “process error” utilized associated with single sample mixtures. High variability in sediment source contribution was observed between hourly time steps; however, local smoothing reveals temporal trends during the event. A higher average proportion of mudstone is found in the falling limb (0.544) compared with the rising limb (0.464), and the reverse is observed for mountain range (0.218 vs. 0.283) and unconsolidated (0.073 vs. 0.055). In the initial hours of the storm, mudstone source contribution significantly drops, whereas mountain range and unconsolidated contributions peak. The SSC-Q clockwise hysteresis indicates proximal sediment sources, suggesting the mudstone sediment is stored channel sediment and easily entrained. This sediment flushes through, coinciding with a drop as the distal mountain range and unconsolidated sources arrive to peak contribution. The wider Manawatū discharge and sediment load then arrive, delivering increasing levels of mudstone throughout the remainder of the event while mountain range sediment diminishes. Spatial representation of the sediment source contribution was derived from distributing sediment source loads to the spatial extent of the source material according to sub-catchment sediment loads and was weighted according to slope. This provided an effective means to visualize the origin of the sediment and a better spatial interpretation of sediment fingerprinting results, which is typically limited by poor spatial resolution.  相似文献   
916.
Using fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model. The unique component was abundant in samples from the Androscoggin River immediately downstream of a pulp mill effluent release site. The detection of a PARAFAC component associated with an anthropogenic source of DOM, such as pulp mill effluent, demonstrates the importance for rigorously analyzing PARAFAC residuals and developing system-specific models.  相似文献   
917.
The importance of near real‐time access to environmental data has increased steadily over the last few years. In this article, the focus is on the European Environment Agency (EEA), which receives environmental data from a large number of providers. The heterogeneous data formats and data transfer mechanisms make the data collection and integration a difficult task for the EEA. An approach is needed for facilitating the interoperable exchange of environmental data on a large scale. A core element of this approach is the Sensor WebEnablement (SWE) technology of the Open Geospatial Consortium (OGC) which allows the standardized, interoperable, vendor and domain independent exchange of sensor data. The main contribution of this article is a lightweight profile for the OGC Sensor Observation Service that ensures the necessary interoperability for seamlessly integrating the environmental data provided by the EEA's member states and thus forms the foundation for the developed data exchange mechanisms. This is complemented by information about the resulting Sensor Web architecture and the integration into the EEA's existing IT infrastructure. In summary, this article describes a practical scenario in which SWE technology enables the exchange of near real‐time environmental data on a large scale.  相似文献   
918.
The van Cittert-Zernike theorem describes the Fourier transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave earth remote sensing. The development provides insight into the mechanics of two-dimensional inteferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.  相似文献   
919.
920.
The temperature dependence of the hexagonal c unit cell parameter of high-purity NaNO3 shows an anomaly at 553 K corresponding to the orientational ordering transition. The a unit cell parameter is barely influenced by the transition. The single component spontaneous strain for this zone boundary instability is large (55×10–3 at 295 K), and couples quadratically with the order parameter. The critical exponent is found to have the value 0.22 ± 0.01, which differs from that expected in the classical case. Below ca 450 K, crossover to tricritical behaviour is observed (=1/4). The temperature evolution of the macroscopic order parameter as revealed by the temperature dependence of the spontaneous strain follows a tricritical behaviour between 70 K and 450 K. At temperatures below 70 K order parameter saturation is observed. Combined with recent data from specific heat measurements, the critical exponents suggest that the three-dimensional, three-states Potts model may describe the transition.Precursor spontaneous strain above T c is consistent with local ordering and may result from fluctuations associated with an antiordered NO3 group pair configuration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号