首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   26篇
  国内免费   9篇
测绘学   4篇
大气科学   29篇
地球物理   169篇
地质学   201篇
海洋学   150篇
天文学   144篇
综合类   10篇
自然地理   43篇
  2021年   8篇
  2020年   5篇
  2019年   16篇
  2018年   10篇
  2017年   25篇
  2016年   15篇
  2015年   11篇
  2014年   36篇
  2013年   28篇
  2012年   21篇
  2011年   33篇
  2010年   29篇
  2009年   29篇
  2008年   32篇
  2007年   39篇
  2006年   37篇
  2005年   32篇
  2004年   45篇
  2003年   19篇
  2002年   19篇
  2001年   27篇
  2000年   21篇
  1999年   15篇
  1998年   16篇
  1997年   14篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1993年   12篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   8篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   5篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1971年   3篇
  1952年   3篇
  1943年   2篇
排序方式: 共有750条查询结果,搜索用时 203 毫秒
101.
Riassunto Dalle osservazioni dello stato del mare, eseguite a Trieste alle ore 8, 14 e 19, nel ventennio 1931–1950, si deducono le medie mensili, stagionali ed annue. Il moto ondoso risulta massimo alle ore 14 dei mesi estivi, minimo alle ore 8 degli stessi mesi. Il valore medio annuo è 1.7, lo stato medio del mare risulta poco meno che leggermente mosso. Nel ventennio l'andamento medio annuo non è nè crescente nè decrescente, presenta una concavità negli anni centrali. Tra la velocità del vento e lo stato ondoso sono stati determinati coefficienti di correlazione che variano, secondo i casi, da 0.49 a 0.94.
Summary From the observations of the seawave-motion effectuated in Trieste at 8h, 14h and 19h, during the years 1931–1950, the monthly and annual mean values are calculated. The maximum wave-motion results at 14h of the summer months, the minimum one at 8h of the same months. The mean annual value is 1.7, that is: a little inferior than «lightly moved». Between the wind-velocity and the wave-motion have been determined correlation-coefficients varying from 0.49 to 0.94.
  相似文献   
102.
103.
Extracellular peptide hydrolysis rates were measured in seawater and sediment from Flax Pond salt marsh using peptide analogs (LYA-peptides) as substrates. This technique allows the direct measurement of specific hydrolysis products and thus provides insights into enzymatic hydrolysis pathways. In sediments, hydrolysis rate constants of LYA-peptides varied seasonally and with depth. Highest activity was found in spring and summer, and most cores exhibited a subsurface maximum. Calculations using the concentrations of chemically-measured peptides suggested that extracellular hydrolysis of peptides is faster than the rate of free amino acids uptake. However, not all peptides may be available for enzymatic hydrolysis. In both seawater and sediment, extracellular hydrolysis of peptides of up to 8 amino acids yielded smaller peptides and free amino acids. Hydrolysis rates depended on size of the peptide substrate, although a clear relationship with number of amino acid constituents was not evident. Peptides containing >2 amino acids were hydrolyzed 10–400 times faster than dipeptides or the fluorogenic substrate Leucine-MCA. Thus, dipeptidases are either uncommon in nature, or hydrolysis is carried out by nonspecific hydrolases that with a low affinity for dipeptides. This is also suggested by the presence of a lag time before dipeptide hydrolysis begins, and the absence of dipeptide hydrolysis in 0.2-μm-filtered. One implication of this finding is that measurements of hydrolysis rates using substrates like Leu-MCA may not accurately predict the magnitude of hydrolysis rates of macromolecules in the marine environment. Even though dipeptide hydrolysis is slow compared to that of larger peptides, LYA-dipeptides are preferentially produced from the hydrolysis of larger substrates. LYA-dipeptides do not penetrate cell membranes of microorganisms because of their size, but natural dipeptides are smaller and can be transported across the cell membrane. Since dipeptides do not appear to accumulate in natural waters, they must be rapidly removed by microorganisms.  相似文献   
104.
Current Nature of the Kuroshio in the Vicinity of the Kii Peninsula   总被引:1,自引:0,他引:1  
The Kuroshio flows very close to Cape Shionomisaki when it takes a straight path. The detailed observations of the Kuroshio were made both on board the R/V Seisui-maru of Mie University and on board the R/V Wakayama of the Wakayama Prefectural Fisheries Experimental Station on June 11–14, 1996. It was confirmed that the current zone of the Kuroshio touches the coast and bottom slope just off Cape Shionomiaki, and that the coastal water to the east of the cape was completely separated from that to the west. The relatively high sea level difference between Kushimoto and Uragami could be caused by this separation of the coastal waters when the Kuroshio takes a straight path. This flow is rather curious, as the geostrophic flow, which has a barotropic nature and touches the bottom, would be constrained to follow bottom contours due to the vorticity conservation law. The reason why the Kuroshio leaves the bottom slope to the east of Cape Shionomisaki is attributed to the high curvature of the bottom contours there: if the current were to follow the contours, the centrifugal term in the equation of motion would become large and comparablee to the Coriolis (or pressure gradient) term, and the geostrophic balance would be destroyed. This creates a current-shadow zone just to the east of the cape. As the reason why the current zone of the Kuroshio intrudes into the coastal region to the west of the cape, it is suggested that the Kii Bifurcation Current off the southwest coast of the Kii Peninsula, which is usually found when the Kuroshio takes the straight path, has the effect of drawing the Kuroshio water into the coastal region. The sea level difference between Kushimoto and Uragami is often used to monitor the flow pattern of the Kuroshio near the Kii Peninsula. It should be noted that Uragami is located in the current shadow zone, while Kushimoto lies in the region where the offshore Kuroshio water intrudes into the coastal region. The resulting large sea level difference indicates that the Kuroshio is flowing along the straight path.  相似文献   
105.
Interdecadal variations of El Niño/Southern Oscillation (ENSO) signals and annual cycles appearing in the sea surface temperature (SST) and zonal wind in the equatorial Pacific during 1950–1997 are studied by wavelet, empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses. The typical timescale of ENSO is estimated to be about 40 months before the late 1970s and 48–52 months after that; the timescale increased by about 10 months. The spatial pattern of the ENSO signal appearing in SST also changed in the 1970s; before that, the area of strong signal spread over the extratropical regions, while it is confined near the equator after that. The center of the strongest signal shifted from the central and eastern equatorial Pacific to the South American coast at that time. These SST fluctuations near the equator are associated with fluctuations of zonal wiond, whose spatial pattern also shifted considerably eastward at that time. In the eastern equatorial Pacific, amplitudes of annual cycles of SST are weak in El Niño years and strong in La Niña years. This relation is not clear, however, in the 1980s and 1990s.  相似文献   
106.
The International Ocean Discovery Program Expedition 350 drilled between two Izu rear‐arc seamount chains at Site U1437 and recovered the first complete succession of rear‐arc rocks. The drilling reached 1806.5 m below seafloor. In situ hyaloclastites, which had erupted before the rear‐arc seamounts came into existence at this site, were recovered in the deepest part of the hole (~15–16 Ma). Here it is found that the composition of the oldest rocks recovered does not have rear‐arc seamount chain geochemical signatures, but instead shows affinities with volcanic front or some of the extensional zone basalts between the present volcanic front and the rear‐arc seamount chains. It is suggested that following the opening of the Shikoku back‐arc Basin, Site U1437 was a volcanic front or a rifting zone just behind the volcanic front, and was followed at ~ 9 Ma by the start of rear‐arc seamount chains volcanism. This geochemical change records variations in the subduction components with time, which might have followed eastward moving of hot fingers in the mantle wedge and deepening of the subducting slab below Site U1437 after the cessation of Shikoku back‐arc Basin opening.  相似文献   
107.
108.
A new method to evaluate the strength of rock mass structures is proposed and examined. The method is based on the collapse load analysis of elasto-perfectly plastic material along with the homogenization method, which enables the multi-scale analyses for heterogeneous media. The homogenization process replaces a rock mass with cracks by an equivalent continuum medium with macroscopic stiffness while the failure criterion for the rock mass is estimated in the localization process. It is shown that both the averaged stiffness and the macroscopic failure criterion of the discontinuous rock mass are numerically obtained via the finite element analyses. Thus, the failure strength of a rock mass structure is evaluated by the collapse load analysis in the form of Linear Programming with the macroscopic failure criterion. This is the first attempt to apply the homogenization method to the strength analysis of rock mass. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
109.
Phytoplankton primary production and its regulation by light and nutrient availability were investigated in the shallow, tropical coastal waters of Bandon Bay, Southern Thailand. The bay was meso‐eutrophicated and highly turbid, receiving river water discharge. Water column stratification was consistently weak during both rainy and dry seasons. Dissolved inorganic nitrogen (DIN) was higher off the river mouth than in the other regions, suggesting that river water discharge was a main source of DIN. By contrast, dissolved inorganic phosphorus (DIP) showed a significant negative correlation with total water depth, implying that regeneration around the sea floor was an important source of DIP. Surface DIN and DIP showed positive correlations with surface primary production (PP) and water column primary productivity (ΣPP*), respectively. The combined correlation and model analyses indicate that total water depth had an ambivalent influence on water column primary production (ΣPP); shallower water depth induced more active regeneration of nutrients, but it also caused higher turbidity and lower light availability as a result of enhanced resuspension of sediments. Furthermore, there was a vertical constraint for phytoplankton during the rainy season: total water depth tended to be shallower than euphotic zone depth. In conclusion, light limitation and vertical constraint owing to shallow water depth appear to be more important than nutrient limitation for water column primary production in Bandon Bay.  相似文献   
110.
A numerical simulation of Otsuchi Bay located on the northeast coast of the Honshu, the largest island of Japan, is conducted, using an ocean general circulation model (OGCM) with a nested-grid system in order to illustrate seasonal variability of the circulation in the bay. Through a year, an anticlockwise circulation is dominant in the bay, as observational studies have implied, although it is modified in the bay-mouth-half of the bay in winter. In addition, there is an intense outflow at the surface layer during spring to autumn, influenced by river water discharge. Intrusion of the Pacific water into the bay is influened by mean circulations, but it is also influenced by baroclinic tides from spring to autumn. Pacific water intrusions affected by baroclinic tides may have an impact on the environment in Otsuchi Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号