首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
大气科学   2篇
地球物理   7篇
地质学   23篇
海洋学   6篇
综合类   1篇
自然地理   5篇
  2020年   2篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1994年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1955年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
21.
Benthic and planktonic oxygen isotope (δ18Occ) and Mg/Ca analyses in two cores from the Northeast Atlantic have permitted the reconstruction of surface- and deep-water temperature (Tdw) and δ18O (δ18Ow) variations across the last two deglaciations. These records allow the timing of de-glacial melt-water pulses reaching the Northeast Atlantic to be compared with the evolution of local deep-water Tdwδ18Ow conditions. Although each glacial termination is unique in detail, a similar pattern of hydrographic change is reconstructed for both deglaciations, with the first major decrease in deep-water δ18Ow (due to sea-level and/or purely local deep-water change) occurring in parallel with the onset of intensely cold glacial surface-water temperatures, and prior to a ‘terminal’ ice-rafting and melt-water event. The evolution of deep-water across both de-glaciations involved two transient incursions of cold, low-δ18O water into the deep Northeast Atlantic, the second of which was particularly pronounced each time. These pulses of cold deep-water are interpreted to reflect the incursion of water directly analogous to modern Antarctic Bottom Water (AABW), and containing a significant component of brine rejected during sea-ice formation. The results presented here show that the same type of transient changes in deep-water circulation that occurred across Termination I also occurred across Termination II, and that as a result of these deep-ocean changes, the timing of each benthic δ18O ‘termination’ cannot precisely reflect the timing of de-glacial sea-level change, as many palaeoceanographic interpretations (and some controversies) are prone to assume. Such ‘imprecision’ (in timing especially) may well extend to marine isotope stage (MIS) boundaries in general, as a principle of hydrographic variability and its expression in the geological record.  相似文献   
22.
At the start of my INQUA career a reasonable target for the long-term development of Quaternary stratigraphy was the construction of a table that listed a number (perhaps fewer than a dozen, perhaps more) of “stages” for each of the chief regions of the Earth, and which reliably indicated how these stages should be correlated from region to region. A second target was to estimate ages for the stage boundaries. Finally, some workers may have looked towards a series of “global stages” with the hope that these would be defined in their own region rather than in the Alps.For some researchers the target has not changed, nor does its attainment appear much closer. However, there are now many whose requirement is that we create time-series of environmental and climatic change with ever-increasing temporal resolution, along with correlation lines that are precise enough to permit global synoptic reconstruction. Funding for this research is justified partly on the grounds that it will give us increased confidence in our ability to forecast climatic change during the next century. Hence, far from only being of academic interest, long-term planning of energy-based economies indirectly depends upon it. There is a danger that some excellent research by members of the INQUA community becomes marginalized because the stratigraphic framework through which the research is communicated does not meet modern requirements.Oxygen isotope stratigraphy as it was quasi-formalized by Shackleton and Opdyke (1973 and 1976) only applies to marine sediments containing Foraminifera suitable for oxygen isotope analysis. On the other hand there can be no doubt that as an informal standard means of communication, oxygen isotope stratigraphy has been incredibly valuable even in settings where it is very hard to justify its use. Formal stratigraphy is intended to enable precise communication (in research publications and in maps) and I believe that in this regard there is more to be gained by improving correlation to the ocean oxygen isotope record, than by working to define stage boundary stratotypes with continent-scale utility.  相似文献   
23.
24.
A prerequisite for minimizing contamination risk whilst conducting managed aquifer recharge (MAR) with recycled water is estimating the residence time in the zone where pathogen inactivation and biodegradation processes occur. MAR in Western Australia’s coastal aquifers is a potential major water source. As MAR with recycled water becomes increasingly considered in this region, better knowledge of applied and incidental tracer-based options from case studies is needed. Tracer data were collected at a MAR site in Floreat, Western Australia, under a controlled pumping regime over a distance of 50 m. Travel times for bromide-spiked groundwater were compared with two incidental tracers in recycled water: chloride and water temperature. The average travel time using bromide was 87?±?6 days, whereas the estimates were longer based on water temperature (102?±?17 days) and chloride (98?±?60 days). The estimate of average flow velocity based on water temperature data was identical to the estimate based on bromide within a 25-m section of the aquifer (0.57?±?0.04 m day?1). This case study offers insights into the advantages, challenges and limitations of using incidental tracers in recycled water as a supplement to a controlled tracer test for estimating aquifer residence times.  相似文献   
25.
26.
27.
Five suites of rocks collected from the Precambrian basement in the NE Bayuda Desert of central northern Sudan give late Proterozoic whole-rock RbSr isochron ages. The Abu Harik Complex, thought by some previous workers to be an older basement, gives an age of 898 ± 51 Ma. Upper amphibolite-facies metasediments give a metamorphic age of 761 ± 22 Ma. The supposedly younger greenschist-facies El Koro Volcanic Series were erupted 800 ± 83 Ma ago. These are chemically similar to the volcanics which unconformably overlie the Sol Hamed ophiolite in the Red Sea Hills of NE Sudan and to some modern island are volcanics. The metasediments were intruded 678 ± 43 Ma ago by the Diefallab Granite, which is itself deformed. The younger, weakly-deformed Amaki Series, with a basal conglomerate containing basement clasts overlain by purple grits, is probably equivalent to the molasse-type Hammamat Group of the Eastern Desert of Egypt which was deposited between 616 and 596 Ma ago. Finally, the post-tectonic Shallal Granite, with within-plate geochemistry, was intruded 549 ± 12 Ma ago. Geochemical data suggest that the Abu Harik Complex, the El Koro Volcanic Series and the Diefallab Granite are arc-related magmatic rocks. They were intruded into, or thrust onto, shallow-water, shelf sediments during subduction and then collision, between c. 900 and 550 Ma. The data presented here give no support to previous views that the high-grade metasediments were metamorphosed prior to the late Proterozoic events, that they unconformably overlie a still older, perhaps Archaean, basement or that they are unconformably overlain by younger late Proterozoic low-grade volcanics. The Precambrian rocks along the E side of the Bayuda Desert must now all be assigned to the late Proterozoic and the boundary between this late Proterozoic fold belt and an older craton, known to crop out at Jebel Uweinat, must lie farther to the W.  相似文献   
28.
Deep-water temperatures (DWTs) from the Western Mediterranean Sea are reconstructed for the last 50 ka based on the analysis of Mg/Ca ratios in benthic foraminifera from core MD95-2043 collected in the Alboran Sea. The exceptionally high sedimentation rates of this core and the robust chronology available allow discussion of the results in the context of the Dansgaard–Oeschger (D–O) rapid climatic variability. The applicability of Mg/Ca thermometry in the Western Mediterranean Deep-Water mass (WMDW) is first tested by the analysis of different benthic species in a collection of Mediterranean core tops. The results indicate the need of a readjustment of the existing Cibicidoides spp. calibrations in order to reconstruct present Western Mediterranean DWT values (12.7 °C). Different physiological effects in the Mg uptake between the C. pachydermus living in different regions could account for this offset in the Mediterranean samples. Consequently, the obtained DWT record still has many uncertainties in absolute terms but trends provide valuable information on past changes in WMDW conditions. The DWT record shows significant oscillations in relation to the D–O cycles, colder values occurred during the time of D–O stadials and warmer ones during D–O interstadials. Surprisingly, the coldest DWTs occurred during the time of Heinrich Event 4 (HE4) and not during the Last Glacial Maximum (LGM) when DWTs were mostly warm. These and other particular features of the DWT reconstruction mimic changes in the vegetation from the Eastern Mediterranean indicating the control of the Mediterranean climate on the DWT record. Paired analyses of Mg/Ca and δ18Occ (calcite δ18O) provide the opportunity to reconstruct deep-water δ18O (δ18Odw) and past salinities and hence changes in past WMDW density. Due to the large error associated with these calculations, they can only be discussed in terms of relative changes between different intervals. The results suggest the dominance of a heavier water end member during glacial times and a lighter one during the early Holocene in relation to the δ18Odw conditions present today. Densest WMDW were formed during most of Marine Isotopic Stage (MIS) 2 and during the D–O Stadials not associated with HEs, while lightest WMDW dominated during D–O Interstadials. The δ18Odw record shows a D–O variability pattern likely controlled by changes in the composition and intensity of the local run-off and also to changes in the δ18Ow signal of the Atlantic inflow. Changes in the residence time of the Mediterranean waters, governed by the global sea level, are also considered to exert an important role governing Mediterranean δ18Ow and salinity, particularly during MIS 2. Overall, our results are consistent with the formation of dense WMDW during D–O stadials and even denser during most of MIS 2.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号