首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   1篇
  国内免费   1篇
测绘学   10篇
大气科学   16篇
地球物理   13篇
地质学   35篇
海洋学   3篇
天文学   13篇
综合类   2篇
自然地理   2篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
31.
32.
Period–colour (PC) and amplitude–colour (AC) relations are studied for the Large Magellanic Cloud (LMC) Cepheids under the theoretical framework of the hydrogen ionization front (HIF)–photosphere interaction. LMC models are constructed with pulsation codes that include turbulent convection, and the properties of these models are studied at maximum, mean and minimum light. As with Galactic models, at maximum light the photosphere is located next to the HIF for the LMC models. However, very different behaviour is found at minimum light. The long-period  ( P > 10 d)  LMC models imply that the photosphere is disengaged from the HIF at minimum light, similar to the Galactic models, but there are some indications that the photosphere is located near the HIF for the short-period  ( P < 10 d)  LMC models. We also use the updated LMC data to derive empirical PC and AC relations at these phases. Our numerical models are broadly consistent with our theory and the observed data, though we discuss some caveats in the paper. We apply the idea of the HIF–photosphere interaction to explain recent suggestions that the LMC period–luminosity (PL) and PC relations are non-linear with a break at a period close to 10 d. Our empirical LMC PC and PL relations are also found to be non-linear with the F -test. Our explanation relies on the properties of the Saha ionization equation, the HIF–photosphere interaction and the way this interaction changes with the phase of pulsation and metallicity to produce the observed changes in the LMC PC and PL relations.  相似文献   
33.
Production rates of N(2 D) metastable atoms in the daytime atmosphere have been calculated for different possible processes, using positive ion composition and reaction rate data, available presently. Emission rates of the 5199 Å doublet of Ni are calculated by separately and jointly considering the deactivation of N(2 D) atoms by electrons and molecular oxygen.From a comparison of the computed results with the observational data, an attempt has been made to identify the processes of importance to the production and deactivation of N(2 D). For further confirmation of the proposed mechanism the variation of integrated intensity of this radiation with solar activity has been obtained. The calculated values may be compared with intensity data obtained in future at different levels of solar activity.  相似文献   
34.
The hydrogeologic and hydraulic characteristics of a lateritic terrain in West Bengal, India, were investigated. Test drilling was conducted at ten sites and grain-size distribution curves (GSDCs) were prepared for 275 geologic samples. Performance evaluation of eight grain-size-analysis (GSA) methods was carried out to estimate the hydraulic conductivity (K) of subsurface formations. Finally, the GSA results were validated against pumping-test data. The GSDCs indicated that shallow aquifer layers are coarser than the deeper aquifer layers (uniformity coefficient 0.19–11.4). Stratigraphy analysis revealed that both shallow and deep aquifers of varying thickness exist at depths 9–40 and 40–79 m, respectively. The mean K estimates by the GSA methods are 3.62–292.86 m/day for shallow aquifer layers and 0.97–209.93 m/day for the deeper aquifer layers, suggesting significant aquifer heterogeneity. Pumping-test data indicated that the deeper aquifers are leaky confined with transmissivity 122.69–693.79 m2/day, storage coefficient 1.01?×?10?7–2.13?×?10?4 and leakance 2.01?×?10?7–34.56?×?10?2 day?1. Although the K values yielded by the GSA methods are generally larger than those obtained from the pumping tests, the Slichter, Harleman and US Bureau Reclamation (USBR) GSA methods yielded reasonable values at most of the sites (1–3 times higher than K estimates by the pumping-test method). In conclusion, more reliable aquifers exist at deeper depths that can be tapped for dependable water supply. GSA methods such as Slichter, Harleman and USBR can be used for the preliminary assessment of K in lateritic terrains in the absence of reliable field methods.  相似文献   
35.
Theoretical and Applied Climatology - Selection of a best suited satellite-based gridded rainfall product (SGRP) is challenging due to their significant variations at spatial and temporal scale....  相似文献   
36.
Localized deep cumulus convective clouds have a capability of giving enormous amount of rainfall over a limited horizontal area, within a short span of time. Such types of extreme rainfall events are most common over the high elevated areas of Northern India during the Southwest monsoon season which causes widespread damage to the property and lives. Therefore, it is necessary to predict such extreme events accurately to avoid damage associated with them. The numerical mesoscale model Weather Research and Forecasting has been used to simulate the cloud burst event of Leh on August 05, 2010, so as to capture the main characteristics of the various parameters associated with this localized mesoscale phenomenon. The model has been integrated with four nested domains keeping Leh and its adjoining area as center. Two cloud microphysics parameterization schemes namely WSM3 and WSM6 have been used for the sensitivity experiments and results have been analyzed to examine the performance of both the schemes in capturing such extreme localized heavy rainfall events. Results show that the WSM6 microphysics was able to simulate the precipitation near to the observation. WSM3 microphysics simulated the location of the circulation near to the observation. In addition, the results also show that the maximum magnitudes of meridional and vertical wind as simulated with WSM3 microphysics are 12 and 4 m/s, respectively.  相似文献   
37.
38.
39.
The paper presents the finite volume formulation and numerical solution of finite strain one‐dimensional consolidation equation. The equation used in this study utilises a nonlinear continuum representation of consolidation with varying compressibility and hydraulic conductivity and thus inherits the material and geometric nonlinearity. Time‐marching explicit scheme has been used to achieve transient solutions. The nonlinear terms have been evaluated with the known previous time step value of the independent variable, that is, void ratio. Three‐point quadratic interpolation function of Lagrangian family has been used to evaluate the face values at discrete control volumes. It has been shown that the numerical solution is stable and convergent for the general practical cases of consolidation. Performance of the numerical scheme has been evaluated by comparing the results with an analytical solution and with the piecewise piecewise‐linear finite difference numerical model. The approach seems to work well and offers excellent potential for simulating finite strain consolidation. Further, the parametric study has been performed on soft organic clays, and the influence of various parameters on the time ate consolidation characteristics of the soil is shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
40.
Period–colour (PC) and amplitude–colour (AC) relations at maximum, mean and minimum light are constructed from a large grid of full amplitude hydrodynamic models of Cepheids with a composition appropriate for the Small Magellanic Cloud (SMC). We compare these theoretical relations with those from observations. The theoretical relations are, in general, in good agreement with their observational counterparts, though there exist some discrepancy for short period  (log [ P ] < 1)  Cepheids. We outline a physical mechanism which can, in principle, be one factor to explain the observed PC/AC relations for the long and short period Cepheids in the Galaxy, Large Magellanic Cloud (LMC) and SMC. Our explanation relies on the hydrogen ionization front (HIF)–photosphere interaction and the way this interaction changes with pulsation period, pulsation phase and metallicity. Since the PC relation is connected with the period–luminosity (PL) relation, it is postulated that such a mechanism can also explain the observed properties of the PL relation in these three galaxies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号