首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   17篇
  国内免费   12篇
测绘学   15篇
大气科学   15篇
地球物理   92篇
地质学   168篇
海洋学   11篇
天文学   4篇
综合类   6篇
自然地理   14篇
  2024年   1篇
  2023年   3篇
  2022年   13篇
  2021年   18篇
  2020年   20篇
  2019年   13篇
  2018年   30篇
  2017年   38篇
  2016年   33篇
  2015年   20篇
  2014年   30篇
  2013年   41篇
  2012年   13篇
  2011年   13篇
  2010年   7篇
  2009年   9篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有325条查询结果,搜索用时 31 毫秒
31.
32.
33.
The fresh groundwater lenses (FGLs) of small islands can be highly vulnerable to climate change impacts, including sea‐level rise (SLR). Many real cases of atoll or sandy islands involve two‐layer hydrogeological conceptualizations. In this paper, the influential factors that affect FGLs in two‐layer small islands subject to SLR are investigated. An analytical solution describing FGLs in circular islands, composed of two geological layers, is developed for the simplified case of steady‐state and sharp‐interface conditions. An application of the developed model is demonstrated to estimate the FGL thickness of some real‐world islands by comparison with existing FGL thickness data. Furthermore, numerical modelling is applied to extend the analysis to consider dispersion effects and to confirm comparable results for both cases. Sensitivity analyses are used to assess the importance of land‐surface inundation caused by SLR, relative to other parameters (i.e. thickness of aquifer layers, hydraulic conductivity, recharge rate and land‐surface slope) that influence the FGL. Dimensionless parameters are used to generalize the findings. The results demonstrate that land‐surface inundation has a considerable impact on a FGL influenced by SLR, as expected, although the FGL volume is more sensitive to recharge, aquifer thickness and hydraulic conductivity than SLR impacts, considering typical parameter ranges. The methodology presented in this study provides water resource managers with a rapid‐assessment tool for evaluating the likely impacts of SLR and accompanying LSI on FGLs.  相似文献   
34.
The potential for porous windbreaks to enhance wind-turbine power production is studied using linearized theory and wind-tunnel experiments. Results suggest that windbreaks have the potential to substantially increase power production, while lowering mean shear, and leading to negligible changes in turbulence intensity. The fractional increase in turbine power output is found to vary roughly linearly with windbreak height, where a windbreak 10% the height of the turbine hub increases power by around 10%. Wind-tunnel experiments with a windbreak imposed beneath a turbulent boundary layer show the linearized predictions to be in good agreement with particle-image-velocimetry data. Power measurements from a model turbine further corroborate predictions in power increase. Moreover, the wake of the windbreak showed a significant interaction with the turbine wake, which may inform windbreak use in large wind farms. Power measurements from a second turbine downwind of the first with its own windbreak show that the net effect for multiple turbines is dependent on windbreak height.  相似文献   
35.
36.
The saltation regime is very important for understanding the sediment transport mechanism. However,there is no consensus on a model for the saltation regime. This study answers several questions raised with respect to the Eulerian-Lagrangian modeling of sediment transport. The first question is why the previous saltation models that use different combinations of hydrodynamic forces yielded acceptable results? The second question is which shear lift model(i.e. a shear lift expression and its coefficient) is more appropriate? Another important question is which hydrodynamic forces have greater contributions to the saltation characteristics of a sediment particle? The last question is what are the contributions of the turbulence fluctuations as well as effects of using two-and three-dimensional(2 D and 3 D) models on the simulation results? In order to fairly answer these questions, a systematic study was done by considering different scenarios. The current study is the first attempt to clearly discuss these issues. A comprehensive 3 D saltation model for non-cohesive sediment was developed that includes all the hydrodynamic forces acting on the particle. The random nature of sediment transport was included using turbulent flow and bed-particle collision models. The eddy interaction model was applied to generate a3 D turbulent flow field. Bed-particle collisions were considered using the concept of a contact zone and a corresponding contact point. The validation of the model was done using the available experimental data for a wide range of sediment size(0.03 to 4.8 cm). For the first question, the results indicated that some of the hydrodynamic effects show opposing trends and some have negligible effects. With these opposing effects it is possible to adjust the coefficients of different models to achieve acceptable agreement with the same experimental data while omitting some aspects of the physics of the process. A suitable model for the shear lift force was developed by linking the lift coefficient to the drag coefficient and the contributions of the hydrodynamic forces and turbulence fluctuations as well as the consequences of using of 2 D and 3 D models were studied. The results indicate that the shear lift force and turbulent flow fluctuations are important factors for the saltation of both sand and gravel, and they cannot be ignored.  相似文献   
37.
Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45′ N), where the highest tidal velocities in spring tides were ~?1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.  相似文献   
38.
In this work, we tackle the challenge of quantitative estimation of reservoir dynamic property variations during a period of production, directly from four-dimensional seismic data in the amplitude domain. We employ a deep neural network to invert four-dimensional seismic amplitude maps to the simultaneous changes in pressure, water and gas saturations. The method is applied to a real field data case, where, as is common in such applications, the data measured at the wells are insufficient for properly training deep neural networks, thus, the network is trained on synthetic data. Training on synthetic data offers much freedom in designing a training dataset, therefore, it is important to understand the impact of the data distribution on the inversion results. To define the best way to construct a synthetic training dataset, we perform a study on four different approaches to populating the training set making remarks on data sizes, network generality and the impact of physics-based constraints. Using the results of a reservoir simulation model to populate our training datasets, we demonstrate the benefits of restricting training samples to fluid flow consistent combinations in the dynamic reservoir property domain. With this the network learns the physical correlations present in the training set, incorporating this information into the inference process, which allows it to make inferences on properties to which the seismic data are most uncertain. Additionally, we demonstrate the importance of applying regularization techniques such as adding noise to the synthetic data for training and show a possibility of estimating uncertainties in the inversion results by training multiple networks.  相似文献   
39.
During the time taken for seismic data to be acquired, reservoir pressure may fluctuate as a consequence of field production and operational procedures and fluid fronts may move significantly. These variations prevent accurate quantitative measurement of the reservoir change using 4D seismic data. Modelling studies on the Norne field simulation model using acquisition data from ocean-bottom seismometer and towed streamer systems indicate that the pre-stack intra-survey reservoir fluctuations are important and cannot be neglected. Similarly, the time-lapse seismic image in the post-stack domain does not represent a difference between two states of the reservoir at a unique base and monitor time, but is a mixed version of reality that depends on the sequence and timing of seismic shooting. The outcome is a lack of accuracy in the measurement of reservoir changes using the resulting processed and stacked 4D seismic data. Even for perfect spatial repeatability between surveys, a spatially variant noise floor is still anticipated to remain. For our particular North Sea acquisition data, we find that towed streamer data are more affected than the ocean-bottom seismometer data. We think that this may be typical for towed streamers due to their restricted aperture compared to ocean-bottom seismometer acquisitions, even for a favourable time sequence of shooting and spatial repeatability. Importantly, the pressure signals on the near and far offset stacks commonly used in quantitative 4D seismic inversion are found to be inconsistent due to the acquisition timestamp. Saturation changes at the boundaries of fluid fronts appear to show a similar inconsistency across sub-stacks. We recommend that 4D data are shot in a consistent manner to optimize aerial time coverage, and that additionally, the timestamp of the acquisition should be used to optimize pre-stack quantitative reservoir analysis.  相似文献   
40.
Natural Resources Research - This contribution proposes a spatially weighted factor analysis (SWFA) to recognize effectively the underlying mineralization-related feature(s) in geochemical signals....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号