首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28214篇
  免费   298篇
  国内免费   921篇
测绘学   1564篇
大气科学   2519篇
地球物理   5405篇
地质学   13120篇
海洋学   1181篇
天文学   2133篇
综合类   2168篇
自然地理   1343篇
  2021年   72篇
  2020年   63篇
  2019年   46篇
  2018年   4831篇
  2017年   4129篇
  2016年   2764篇
  2015年   363篇
  2014年   275篇
  2013年   268篇
  2012年   1071篇
  2011年   2845篇
  2010年   2162篇
  2009年   2464篇
  2008年   2008篇
  2007年   2423篇
  2006年   164篇
  2005年   276篇
  2004年   454篇
  2003年   468篇
  2002年   337篇
  2001年   128篇
  2000年   119篇
  1999年   80篇
  1998年   90篇
  1997年   60篇
  1996年   51篇
  1995年   64篇
  1994年   73篇
  1993年   32篇
  1992年   31篇
  1991年   32篇
  1990年   45篇
  1989年   35篇
  1988年   33篇
  1987年   31篇
  1985年   43篇
  1984年   43篇
  1983年   55篇
  1982年   40篇
  1981年   61篇
  1980年   55篇
  1979年   29篇
  1978年   53篇
  1977年   30篇
  1976年   40篇
  1975年   42篇
  1974年   53篇
  1973年   47篇
  1969年   25篇
  1968年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
We consider conjunctive surface-subsurface flow modeling, where surface water flow is described by the shallow water equations and ground water flow by Richards’ equation for the vadose zone. Coupling between the models is based on the continuity of flux and water pressure. Numerical approximation of the coupled model using the framework of discontinuous Galerkin (DG) methods is formulated. In the subsurface, the local discontinuous Galerkin (LDG) method is used to approximate ground water velocity and hydraulic head; a DG method is also used to approximate surface water velocity and elevation. This approach allows for a weak coupling of the models and the use of different approximating spaces and/or meshes within each regime. A simplified LDG method based on continuous approximations to water head is also described. Numerical results that investigate physical and numerical aspects of surface–subsurface flow modeling are presented. This work was supported by National Science Foundation grant DMS-0411413.  相似文献   
32.
In many cases, the development of groundwater resources to boost agricultural production in dry areas has led to a continuous decline in groundwater levels; this has called into question the sustainability of such exploitation. In developing countries, limited budgets and scarce hydrological data often do not allow groundwater resources to be assessed through groundwater modeling. A case study is presented of a low-cost water-balance approach to groundwater resource assessments in a 1,550 km2 semi-arid region in northwestern Syria. The past development of irrigated agriculture and its effect on the groundwater system were studied by analysis of Landsat images and long-term groundwater level changes, respectively. All components of the groundwater balance were determined. Groundwater recharge was estimated using the chloride mass balance method. Over the past three decades, groundwater levels have declined, on average, 23 m, coinciding with a two-fold increase in the groundwater-irrigated area. Groundwater resources are currently depleted by a value that lies between 9.5×106 and 118×106 m3 year?1, which is larger than can be compensated for by a future decrease in natural discharge or changes in boundary conditions. However, groundwater resources are likely to be sufficient to supply domestic and livestock needs in the area.  相似文献   
33.
34.
Thirty-three new measurements on the seaward slope and outer rise of the Japan Trench along a parallel of 38°45′N revealed the existence of high heat flow anomalies on the subducting Pacific plate, where the seafloor age is about 135 m.y.. The most prominent anomaly with the highest value of 114 mW/m2 is associated with a small mound on the outer rise, which was reported to be a kind of mud volcano. On the seaward slope of the trench, heat flow is variable: high (70–90 mW/m2) at some locations and normal for the seafloor age (about 50 mW/m2) at others. The spatial variation of heat flow may be related to development of normal faults and horst/graben structures due to bending of the Pacific plate before subduction, with fluid flow along the fault zones enhancing the vertical heat transfer. Possible heat sources of the high heat flow anomalies are intra-plate volcanism in the last several million years like that discovered recently on the Pacific plate east of the Japan Trench.  相似文献   
35.
Large-scale ancient landslides of the area of more than 5 km2 and volume exceeding 200 × 106 m3 are characteristic features of the valleys incised in the northern periphery of the Crimean Mountains (Ukraine). The largely affected area is located in the outermost cuesta range of the Crimean Mountains which consists of rigid Sarmatian limestones overlying weak Middle Miocene and Upper Palaeogene deposits. A giant landslide arose in the Alma water gap as a reflection of several coincident preparatory factors such as suitable bedrock stratification, smectite-rich bedrock exposed to swelling activity, presence of faults parallel to the valley trend, and river capture event which preceded the landslide event. The occurrence of such ancient megaslides is particularly interesting in the area which is characterized by low precipitation (<500 mm/year) and weak contemporary seismicity. It probably reflects a more dynamic environment in humid phases of the Holocene; however, seismic triggering along the Mesozoic suture zone cannot be rejected. Compressional features such as gravitational folds in the central and distal parts of the landslide, which probably correlate with the whole landslide genesis or its significant reactivation, arose, according to the radiocarbon dating, during the Holocene climatic optimum in the Atlantic period. The slope deformation has been relatively quiescent since that time, except minor historic reactivization which took place in the frontal part of the landslide. We suppose that the studied landslide could be classified as a transitional type of slope deformation with some signs of spreading and translational block slides.  相似文献   
36.
In this paper, an inverse mapping is used to transform the previously-derived analytical solutions from a local elliptical coordinate system into a conventional Cartesian coordinate system. This enables a complete set of exact analytical solutions to be derived rigorously for the pore-fluid velocity, stream function, and excess pore-fluid pressure around and within buried inclined elliptic inclusions in pore-fluid-saturated porous rocks. To maximize the application range of the derived analytical solutions, the focal distance of an ellipse is used to represent the size of the ellipse, while the length ratio of the long axis to the short one is used to represent the geometrical shape of the ellipse. Since the present analytical solutions are expressed in a conventional Cartesian coordinate system, it is convenient to investigate, both qualitatively and quantitatively, the distribution patterns of the pore-fluid flow and excess pressure around and within many different families of buried inclined elliptic inclusions. The major advantage in using the present analytical solution is that they can be conveniently computed in a global Cartesian coordinate system, which is widely used in many scientific and engineering computations. As an application example, the present analytical solutions have been used to investigate how the dip angle of an inclined elliptic inclusion affects the distribution patterns of the pore-fluid flow and excess pore-fluid pressure when the permeability ratio of the elliptic inclusion is of finite but nonzero values.  相似文献   
37.
Summary Deformation experiments have been performed in a triaxial compression cell at a temperature of 300°C and confining pressures up to 65 MPa using samples of homogeneous, fresh two-mica-granite (RM) and monzogranite (CM). The cylindrical specimens (d=70 mm, h=140 mm, V=540 cm3) were tested undrained under dry (105°C), as received, and water saturated conditions at deformation rates between and . The mechanical behaviour of the two types of coarse-grained, crystalloblastic granites is critically influenced by mineralogical composition, porosity, and the amount of intergranular water present in the samples. The failure stress of the CM granite is at about 65% of that of the RM granite; in both rocks strength decreases with increasing porosity and water content.The presence of interstitial water causes a failure mode of non-localized, homogeneously distributed microcracking in the central parts of the samples, whereas, in runs with dry granites, strain localization along a single shear fracture was observed. When aqueous fluids are present, the macroscopic style of deformation of granites appears to be ductile even at lowP andT conditions. Strength and angle of internal friction are reduced to very low values. The style of deformation, as well as the reduction of strength of the water-saturated rock samples, is due to mechanical and chemical effects of intergranular water at elevated temperatures.The maximum differential stresses measured for these coarse-grained granites are much lower than the strength commonly reported for other granites, e. g. Westerly and Charcoal granites. Our data suggest that the strength of the granitic crust under differential stress is lower than currently deduced from laboratory experiments.  相似文献   
38.
Summary The starting material used was expanded perlite with a grain size < 40 m (74.5 wt.% SiO2; 12.5 wt.% Al2O3). This material is a waste product obtained during the production of expanded perlite. The experiments were carried out with KOH solutions, mixtures of KOH and NaOH solutions (1:1) as well as NaOH solutions in the concentration range 0.5 N to 6.0 N at temperatures of between 100° and 140°C and with reaction periods of 2 hours to 13 days in closed system. In the experiments with KOH containing solutions zeolite ZK-19 (phillipsite), W (merlinoite), G (chabazite) and F (edingtonite) formed. Without addition of aluminium high percentages of zeolite ZK-19 (80–100 wt.%) and zeolite W (90–100 wt.%) were obtained. The addition of aluminium rendered possibly the formation of 90 to 100 wt.% of zeolite G and 85 to 100 wt.% of zeolite F, respectively. In the experiments with NaOH solutions analcime, zeolite Na-Pc (gismondine), zeolite HS (sodalite hydrate) and zeolite A formed. High percentages of zeolite Na-Pc (90–100 wt.%), zeolite HS (up to 100 wt.%) and analcime (up to 100 wt.%) were synthesized without addition of aluminium. The formation of high percentages of zeolite A (95–100 wt.%), however, needs the addition of aluminium, NaCI and seed crystals. The temperature stability of the zeolites decreases in the following sequence: K-F > K-W K-ZK-19 (Na), K-W Na, K-F Gsi-rich (Na), K-ZK-19 >> Na-Pc Gsi-poor. Zeolite A has a very good temperature stability up to temperatures of } 550 °C similar to that of zeolite K-W. At higher temperatures, however, its stability is very poor. The NH4 +-exchange capacities (meq/g) of the different zeolites amount to the following values: ZK-19:2.8 - 3.2; W:3.0 - 3.2; G:2.3 - 3.6; A:3.1 - 3.2; Na-Pc:3.5 - 3.6; F : 3.9 - 4.8.
Zeolithsynthese aus Blähperlit—Art, Bildungsbedingungen und Eigenschaften
Zusammenfassung Ausgangsmaterial der experimentellen Untersuchungen war Blähperlit mit einer Korngröße < 40 ,m (74,5 Gew.-% SiO2; 12,5 Gew.-% Al2O3). Dieses Material ist ein Abfallprodukt, das bei der Produktion von Blähperlit anfällt. Die Experimente wurden mit KOH-Lösungen, Lösungsgemischen aus KOH und NaOH (1:1) sowie mit NaOH-Losungen im Konzentrationsbereich 0,5 n-6,0 n bei Temperaturen von 100° – 140°C und über Reaktionszeiten von 2 Stunden bis zu 13 Tagen im geschlossenen System durchgeführt. In den Experimenten mit KOH-hältigen Lösungen bildeten sich die Zeolithe ZK-19 (Phillipsit), W (Merlinoit), G (Chabasit) und F (Edingtonit). Hohe Prozentgehalte an Zeolith ZK-19 (80 – 100 Gew.-%) und Zeolith W (90–100 Gew.-%) entstehen nur ohne Zugabe von Aluminium. Die Bildung von 90–100 Gew.-% Zeolith G bzw. 85–100 Gew. % Zeolith F ist dagegen durch die Zugabe von Aluminium möglich. In den Experimenten mit NaOH-Lösungen bildeten sich die Zeolithe Analcim, Na-Pc (Gismondin), HS (Sodalithhydrat) und Zeolith A. Hohe Prozentanteile an Zeolith Na-Pc (90–100 Gew.-%), HS (bis zu 100 Gew. %) und Analcim (bis zu 100 Gew.-%) wurden ohne Aluminium-Zugabe synthetisiert. Die Bildung von hohen Gehalten an Zeolith A (95–100 Gew. %) ist jedoch nur unter Zugabe von Aluminium, NaCl und Kristallkeimen möglich.Die Temperaturbeständigkeit der Zeolithe nimmt in der folgenden Reihenfolge ab: K-F > K-W - K-ZK-19 (Na), K-W Na, K-F Gsi-reich (Na), K-ZK-19 >> Na-Pc Gsi-am. Zeolith A weist bis zu Temperaturen von etwa 550°C eine gute Temperaturbeständigkeit auf, die in etwa der von Zeolith K-W entspricht. Bei höheren Temperaturen ist die Beständigkeit jedoch sehr gering.Die NH4+-Austauschkapazitäten (mÄqu/g) der verschiedenen Zeolithe erreichen folgende Werte: ZK-19:2,8 - 3,2; W:3,0 - 3,2; G:2,3 - 3,6; A:3,1 - 3,2; Na-Pc:3,5 -3,6; F:3,9 - 4,8.


With 2 Figures  相似文献   
39.
Book reviews     
  相似文献   
40.
Effects of plasma turbulence on the stability of electrostatic ion loss-cone waves are examined. The turbulence is assumed to be electrostatic with frequencies near 1.5 times the electron gyrofrequency and the frequencies of the generated waves are below the ion plasma frequency ωpi>. A nonlinear growth rate of the order of 10?2ωpi may be obtained, when the amplitude of the turbulence is 20 mV/m. This is comparable to previously found growth rates of the linear ion loss-cone instability, in a plasma with large pitch angle anisotropy. Bounce averaged pitch angle diffusion coefficients are also presented for different models of the ion loss-cone wave spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号