首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   4篇
  国内免费   14篇
测绘学   17篇
大气科学   25篇
地球物理   34篇
地质学   115篇
海洋学   6篇
天文学   4篇
综合类   6篇
自然地理   2篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   4篇
  2018年   14篇
  2017年   12篇
  2016年   10篇
  2015年   9篇
  2014年   14篇
  2013年   35篇
  2012年   22篇
  2011年   19篇
  2010年   10篇
  2009年   3篇
  2008年   2篇
  2007年   7篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
111.
The fine silt deposits of Jammu (J & K State, India) stretch all along the Siwalik foothills from Jammu to the Potwar Plateau in Pakistan. The post-Siwalik deposits, first discussed by de Terra and Paterson (1939), are attributed to wind action. The deposits termed as ‘Potwar loessic silt’ comprising sandy silt are essentially of late Quaternary age (75–18 ka) and are re-looked herein from the point of view of genesis and climatic significance. The sorting, skewness and kurtosis parameters of fine silts of Jammu suggest fluvial environment of the deposits wherein the water budget fluctuated. The weak pedogenesis of fine silts at certain intervals corroborate to periods of less or no sedimentation. The bivariant plot studies further suggest fluvial environment of deposition for the fine silt at Jammu, with regular fluctuations in the budget of river water that was perhaps in consonance with oscillations in the climate of the region.  相似文献   
112.
The penetration of rigid objects such as piles and penetrometers into soils creates a zone of soil disturbance around them. The extent of this disturbed zone influences the resistance of the moving rigid body. This paper presents a theoretical framework to analyze the resistance in the disturbed zone created by a shaft penetrating a clay soil. The soil is modeled as a viscous material after it reaches failure [critical state (CS)]. The results of this analysis show that the viscous drag stress component on the shaft surface is influenced by the size of disturbed zone that has reached CS around the shaft, the shear viscosity of the soil and the velocity profile (or strain rate) in the CS zone around the shaft. The size of CS zone, the velocity profile and the viscosity of soil are interdependent. Large variation in viscous drag occurs when the size of the CS soil zone is less than four times the shaft’s radius. Limiting drag occurs when the size of the CS soil zone exceeds six times the shaft’s radius. The theoretical velocity distribution of the movement of soil in the CS zone shows that the soil is dragged along with shaft in the near field (close to the shaft surface) and moves upwards in the far field.  相似文献   
113.
The semiempirical approach based on envelope summation method given by Midorikawa (Tectonophysics 218:287–295, 1993) has been modified in this paper for modeling of strong motion generation areas (SMGAs). Horizontal components of strong ground motion have been simulated using modifications in the semiempirical approach given by Joshi et al. (Nat Hazard 71:587–609, 2014). Various modifications in the technique account for finite rupture source, layering of earth, componentwise division of energy and frequency-dependent radiation pattern. In this paper, SMGAs of the Uttarkashi earthquake have been modeled. Two different isolated wave packets in the recorded accelerogram have been identified from recorded ground motion, which accounts for two different SMGAs in the entire rupture plane. The approximate locations of SMGAs within the rupture plane were estimated using spatio-temporal variation of 77 aftershocks. Source parameters of each SMGA were calculated from theoretical and observed source displacement spectra computed from two different wave packets in the record. The final model of rupture plane responsible for the Uttarkashi earthquake consists of two SMGAs, and the same has been used to simulate horizontal components of acceleration records at different station using modified semiempirical technique. Comparison of the observed and simulated acceleration records in terms of root mean square error confirms the suitability of the final source model for the Uttarkashi earthquake.  相似文献   
114.
115.
The Bay of Bengal is considered to be a low productive region compared to the Arabian Sea based on conventional seasonal observations. Such seasonal observations are not representative of a calendar year since the conventional approach might miss episodic high productive events associated with extreme atmospheric processes. We examined here the influence of extreme atmospheric events, such as heavy rainfall and cyclone Sidr, on phytoplankton biomass in the western Bay of Bengal using both in situ time-series observations and satellite derived Chlorophyll a (Chl a) and sea surface temperature (SST). Supply of nutrients through the runoff driven by episodic heavy rainfall (234 mm) on 4–5 October 2007 caused an increase in Chl a concentration by four times than the previous in the coastal Bay was observed within two weeks. Similar increase in Chl a, by 3 to 10 times, was observed on the right side of the cyclone Sidr track in the central Bay of Bengal after the cyclone Sidr. These two episodic events caused phytoplankton blooms in the western Bay of Bengal which enhanced ~40% of fishery production during October–December 2007 compared to that in the same period in 2006.  相似文献   
116.
Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June–September or JJAS) from 2005–2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall.  相似文献   
117.
118.
Heavy rainfall triggered landslides are on the rise along the Western Ghats making it a matter of priority to identify landslide-prone areas well in advance. The present effort is aimed at identifying landslide susceptible villages (LSV) around the Kalsubai region of Deccan volcanic province (DVP), Maharashtra, India from 8 weighted landslide parameters- rainfall, slope, lithology, land use and land cover (LULC), soil properties, relative relief, aspect and lineament. These parameters were combined with advanced remote sensing (RS) data and processed in geographical information system (GIS) as well as in image processing software, which are an integral part of geospatial techniques. Out of the total 59 villages, the study identified 9 villages are situated in very high, 13 in high, 12 in moderate, 11 in low and 14 in very low risk zones. Our data reveals incessant heavy rains and steep slopes are the dominant factors in triggering landslides, exacerbated by anthropogenic activity prevalent in the study area. The spatial and non-spatial database created will help to take effective steps in preventing and/or mitigating landslide disasters in the study area. The methodology can be applied to identify other landslide prone areas in a cost effective way.  相似文献   
119.
Most tropical cyclones have very few observations in their vicinity. Hence either they go undetected in standard analyses or are analyzed very poorly, with ill defined centres and locations. Such initial errors obviously have major impact on the forecast of cyclone tracks using numerical models. One way of overcoming the above difficulty is to remove the weak initial vortex and replace it with a synthetic vortex (with the correct size, intensity and location) in the initial analysis. The objective of this study is to investigate the impact of introducing NCAR–AFWA synthetic vortex scheme in the regional model MM5 on the simulation of a tropical cyclone formed over the Arabian Sea during November 2003. Two sets of numerical experiments are conducted in this study. While the first set utilizes the NCEP reanalysis as the initial and lateral boundary conditions, the second set utilizes the NCAR–AFWA synthetic vortex scheme. The results of the two sets of MM5 simulations are compared with one another as well as with the observations and the NCEP reanalysis. It is found that inclusion of the synthetic vortex has resulted in improvements in the simulation of wind asymmetries, warm temperature anomalies, stronger vertical velocity fields and consequently in the overall structure of the tropical cyclone. The time series of the minimum sea level pressure and maximum wind speed reveal that the model simulations are closer to observations when synthetic vortex was introduced in the model. The central minimum pressure reduces by 17 hPa while the maximum wind speed associated with the tropical cyclone enhances by 17 m s −1 with the introduction of the synthetic vortex. While the lowest central pressure estimated from the satellite image is 988 hPa, the corresponding value in the synthetic vortex simulated cyclone is 993 hPa. Improvements in the overall structure and initial location of the center of the system have contributed to considerable reduction in the vector track prediction errors ie. 642 km in 24 h, 788 km in 48 h and 1145 km in 72 h. Further, simulation with the synthetic vortex shows realistic spatial distribution of the precipitation associated with the tropical cyclone.  相似文献   
120.
This study investigates the impact of monthly Ganges–Brahmaputra river discharge variations on Bay of Bengal salinity and temperature during the period 1992–1999. The Ganges–Brahmaputra river discharge is characterized by a well-defined seasonal cycle with strong interannual variations. The highest/lowest yearly peak discharge occurs in summer 1998/summer 1992, with 1998 value amounting to twice that of 1992. This river discharge is then used to force an ocean general circulation model. Our main result is that the impact of these rivers on the variability of Bay of Bengal sea surface salinity is strong in the northern part, with excess run-off forcing fresh anomalies, and vice versa. Most of the years, the influence of the interannual variability of river discharge on the Bay salinity does not extend south of ~10°N. This stands in contrast with the available observations and is probably linked to the relatively coarse resolution of our model. However, the extreme discharge anomaly of 1998 is exported through the southern boundary of the Bay and penetrates the south-eastern Arabian Sea a few months after the discharge peak. In response to the discharge anomalies, the model simulates significant mixed-layer temperature anomalies in the northern Bay of Bengal. This has the potential to influence the climate of the area. From our conclusions, it appears necessary to use a numerical model with higher resolution (both on the horizontal and vertical) to quantitatively investigate the upper Bay of Bengal salinity structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号