首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   37篇
  国内免费   26篇
测绘学   49篇
大气科学   44篇
地球物理   192篇
地质学   398篇
海洋学   26篇
天文学   38篇
综合类   8篇
自然地理   37篇
  2024年   1篇
  2023年   6篇
  2022年   27篇
  2021年   46篇
  2020年   38篇
  2019年   34篇
  2018年   73篇
  2017年   66篇
  2016年   93篇
  2015年   44篇
  2014年   72篇
  2013年   90篇
  2012年   48篇
  2011年   52篇
  2010年   28篇
  2009年   22篇
  2008年   13篇
  2007年   6篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
  1997年   4篇
  1991年   1篇
  1975年   3篇
排序方式: 共有792条查询结果,搜索用时 46 毫秒
41.
The ability of fuzzy logic algorithms to model relationships between stream flow and suspended sediment discharge was investigated using daily measurements of stream flow and suspended sediment discharge for the Escanaba River mouth station, situated on the shore of Lake Michigan and operated by the US Geological Survey. Three different configurations of inputs were applied, whereby the inputs were fuzzified into fuzzy subsets of variables by means of triangular membership functions. The relationships between inputs and suspended sediment discharge (output) were represented by a set of fuzzy rule expressed in IF–THEN format. The weighted average method served for defuzzification. The commonly used sediment rating curve was also applied to the data, and its performance compared with that of the three models by means of statistical analyses. For all three models, suspended sediment discharge predicted by the fuzzy logic algorithm was in satisfactory agreement with observations. Furthermore, the fuzzy logic algorithms performed better than the sediment rating curve, particularly at higher rates of suspended sediment discharge (in this study, more than 50  × 106 g/day). Considered collectively, the use of fuzzy logic algorithms is suggested as a simple and effective approach for better prediction of suspended sediment discharge, also for estuaries.  相似文献   
42.
This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method.The numerical method for computation of the induced pressure and lift is potential-based boundary element method.Special technique is identified to present upwash geometry and to determine the spray drag.Numerical results of a planing flat plate and planing craft model 4666 are presented.It is shown that the method is robust and efficient and the results agree well with the experimental measurements with various Froude humors.  相似文献   
43.
A reliable and accurate prediction of the tunnel boring machine(TBM) performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects.This research aims to develop six hybrid models of extreme gradient boosting(XGB) which are optimized by gray wolf optimization(GWO), particle swarm optimization(PSO), social spider optimization(SSO), sine cosine algorithm(SCA), multi verse optimization(MVO) and moth flame optimization(MFO), for estimation of the TBM penetration rate(PR).To do this, a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation, the rock mass rating, Brazilian tensile strength(BTS), rock mass weathering, the uniaxial compressive strength(UCS), revolution per minute and trust force per cutter(TFC), were set as inputs and TBM PR was selected as model output.Together with the mentioned six hybrid models, four single models i.e., artificial neural network, random forest regression, XGB and support vector regression were also built to estimate TBM PR for comparison purposes.These models were designed conducting several parametric studies on their most important parameters and then, their performance capacities were assessed through the use of root mean square error, coefficient of determination, mean absolute percentage error, and a10-index.Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of(0.1453, and 0.1325), R~2 of(0.951, and 0.951), mean absolute percentage error(4.0689, and 3.8115), and a10-index of(0.9348, and 0.9496) in training and testing phases, respectively.The developed hybrid PSO-XGB can be introduced as an accurate, powerful and applicable technique in the field of TBM performance prediction.By conducting sensitivity analysis, it was found that UCS, BTS and TFC have the deepest impacts on the TBM PR.  相似文献   
44.
The legal regime of the Caspian Sea has been determined under Treaties 1921 and 1940 by and between Iran and former Soviet Union. In fact, we are neither to explain it nor to determine. As understood from the provisions therein, the exploitation and use of the Caspian Sea by both countries are based on the Condominium. However, there is a 10-nautical mile strip as exclusive fishing areas which have been allocated to the states under the 1940 treaty. It means that Soviet Union and Iran may benefit the marine livings resources out of that strip on an equal manner. This right also includes the seabed and underlying bed. So, the legal regime of this sea may be based on a 10-nautical mile exclusive region for all five states and the remaining part as common and joint area under an agreement until an explaining and supervising organization is established to exploit and supervise over living and non-livings resources.  相似文献   
45.
Abstract

The study of sediment load is important for its implications to the environment and water resources engineering. Four models were considered in the study of suspended sediment concentration prediction: artificial neural networks (ANNs), neuro-fuzzy model (NF), conjunction of wavelet analysis and neuro-fuzzy (WNF) model, and the conventional sediment rating curve (SRC) method. Using data from a US Geological Survey gauging station, the suspended sediment concentration predicted by the WNF model was in satisfactory agreement with the measured data. Also the proposed WNF model generated reasonable predictions for the extreme values. The cumulative suspended sediment load estimated by this model was much higher than that predicted by the other models, and is close to the observed data. However, in the current modelling, the ANN, NF and SRC models underestimated sediment load. The WNF model was successful in reproducing the hysteresis phenomenon, but the SRC method was not able to model this behaviour. In general, the results showed that the NF model performed better than the ANN and SRC models.

Citation Mirbagheri, S. A., Nourani, V., Rajaee, T. & Alikhani, A. (2010) Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrol. Sci. J. 55(7), 1175–1189.  相似文献   
46.
47.
48.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
49.
The sawing rate is one of the most significant and effective parameters in extracting building stones via diamond wire sawing. This parameter designates the capability of diamond wire sawing for sawing different stones; in addition, the parameter gives rise to economical considerations for quarry designers. In this study, the existent relations between stone geotechnical parameters and the sawing rate of stones via diamond wire sawing were analyzed using regression and correlation coefficient as well as the collected data from Marmarit stone quarries. Moreover, we estimated the sawing rate of Marmarit using the dimensional stone rock mass rating (DSRMR); upon comparison of the data obtained from DSRMR our pre‐collected data on quarries, we did not gain satisfactory results from DSRMR, hence we used artificial neural network (ANN). The results showed that the percentage of Silica, the coefficient of water absorption, the uniaxial compressive strength (UCS), and abrasive hardness are the proper parameters for creating the ANN. Discontinuities have the least effects possible on diamond wire sawing. Having given the training possibility of the ANN, and its ability to evaluate relations among input parameters, the ANN, which was being trained with Marmarit's traits, was an accurate network for estimating diamond wire sawing in Marmarit quarries, although it could not generalize this network for other stones such as Chini and Crystal. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号