首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92547篇
  免费   1505篇
  国内免费   807篇
测绘学   2433篇
大气科学   6836篇
地球物理   17450篇
地质学   32354篇
海洋学   8230篇
天文学   21985篇
综合类   270篇
自然地理   5301篇
  2021年   819篇
  2020年   922篇
  2019年   969篇
  2018年   2180篇
  2017年   2088篇
  2016年   2632篇
  2015年   1503篇
  2014年   2648篇
  2013年   4855篇
  2012年   2677篇
  2011年   3516篇
  2010年   3170篇
  2009年   4114篇
  2008年   3624篇
  2007年   3660篇
  2006年   3431篇
  2005年   2784篇
  2004年   2799篇
  2003年   2612篇
  2002年   2505篇
  2001年   2208篇
  2000年   2083篇
  1999年   1839篇
  1998年   1864篇
  1997年   1775篇
  1996年   1506篇
  1995年   1462篇
  1994年   1348篇
  1993年   1208篇
  1992年   1201篇
  1991年   1146篇
  1990年   1264篇
  1989年   1059篇
  1988年   1055篇
  1987年   1159篇
  1986年   1016篇
  1985年   1331篇
  1984年   1476篇
  1983年   1372篇
  1982年   1309篇
  1981年   1213篇
  1980年   1104篇
  1979年   1085篇
  1978年   1060篇
  1977年   921篇
  1976年   879篇
  1975年   815篇
  1974年   844篇
  1973年   873篇
  1971年   548篇
排序方式: 共有10000条查询结果,搜索用时 734 毫秒
751.
Neutrophilic iron oxidizing bacteria (FeOB) must actively compete with rapid abiotic processes governing Fe(II) oxidation and as a result have adapted to primarily inhabit low-O2 environments where they can more successfully compete with abiotic Fe(II) oxidation. The spatial distribution of these microorganisms can be observed through the chemical gradients they affect, as measured using in situ voltammetric analysis for dissolved Fe(II), Fe(III), O2, and FeS(aq). Field and laboratory determination of the chemical environments inhabited by the FeOB were coupled with detailed kinetic competition studies for abiotic and biotic oxidation processes using a pure culture of FeOB to quantify the geochemical niche these organisms inhabit. In gradient culture tubes, the maximum oxygen levels, which were associated with growth bands of Sideroxydans lithotrophicus (ES-1, a novel FeOB), were 15-50 μM. Kinetic measurements made on S. lithotrophicus compared biotic/abiotic (killed control) Fe oxidation rates. The biotic rate can be a significant and measurable fraction of the total Fe oxidation rate below O2 concentrations of approximately 50 μM, but biotic Fe(II) oxidation (via the biotic/abiotic rate comparison) becomes difficult to detect at higher O2 levels. These results are further supported by observations of conditions supporting FeOB communities in field settings. Variablity in cell densities and cellular activity as well as variations in hydrous ferrous oxide mineral quantities significantly affect the laboratory kinetic rates. The microbial habitat (or geochemical niche) where FeOB are active is thus largely controlled by the competition between abiotic and biotic kinetics, which are dependent on Fe(II) concentration, PO2, temperature and pH in addition to the surface area of hydrous ferric oxide minerals and the cell density/activity of FeOB. Additional field and lab culture observations suggest a potentially important role for the iron-sulfide aqueous molecular cluster, FeS(aq), in the overall cycling of iron associated with the environments these microorganisms inhabit.  相似文献   
752.
Understanding of isotopic variations in leaf water is important for reconstruction of paleoclimate and assessment of global biochemical processes. We report here a study of isotopic distributions within a single needle of two pine species, Pinus resinosa Ait and Pinus strobes L., with the objective of understanding how isotopic compositions of leaf water are controlled by environmental and physiological variables. A 2D model was developed to simulate along-leaf isotopic variations and bulk leaf water isotopic compositions. In addition to variables common to all leaf water isotopic models, this 2D model also takes into account the specific geometry and dimensions of pine needles and the isotopic transport in xylem and mesophyll. The model can successfully simulate oxygen isotopic variations along a single needle and averaged over a leaf (bulk leaf water). The simulations suggest that isotopic composition of the bulk leaf water does not always depend only upon the average transpiration rate, which in turn raises questions about using leaf water isotopic values to estimate transpiration rates. An unsuccessful attempt to simulate along-needle hydrogen isotopic variations suggests that certain unknown biological process(es) may not have been incorporated into our 2D model, and if so, it calls for a reevaluation of all other models for hydrogen isotopic simulations of leaf water since they too lack these processes.Existing leaf water isotopic models are reviewed in this work. In particular, we evaluate the most frequently used model, the stomatal boundary layer model (also referred to as the Craig-Gordon model). We point out that discrepancy between the boundary layer model and the measured bulk leaf water seems to depend upon relative humidity. Using our 2D model, we show that this humidity dependency is a result of an interplay between environmental and physiological conditions: if the transpiration rate of plant leaves decreases with increasing relative humidity, our 2D model can reproduce the pattern of isotopic discrepancy between boundary layer model predictions and observations, enabling us to understand better the reason behind this discrepancy.  相似文献   
753.
In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged pKa values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10−4, (9.0 ± 3.0) × 10−5, (4.6 ± 1.8) × 10−5, and (6.1 ± 2.3) × 10−5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption behavior that we observed for A. angustum demonstrate that genetic differences do exist between the cell wall functional group chemistries of some bacterial species, and that significant exceptions to the typical bacterial adsorption behavior do exist.  相似文献   
754.
Earth’s core may contain C, and it has been suggested that C in the core could stabilize the formation of a solid inner core composed of Fe3C. We experimentally examined the Fe-C system at a pressure of 5 GPa and determined the Fe-C phase diagram at this pressure. In addition, we measured solid metal/liquid metal partition coefficients for 17 trace elements and examined the partitioning behavior between Fe3C and liquid metal for 14 trace elements. Solid metal/liquid metal partition coefficients are similar to those found in one atmosphere studies, indicating that the effect of pressure to 5 GPa is negligible. All measured Fe3C/liquid metal partition coefficients investigated are less than one, such that all trace elements prefer the C-rich liquid to Fe3C. Fe3C/liquid metal partition coefficients tend to decrease with decreasing atomic radii within a given period. Of particular interest, our 5 GPa Fe-C phase diagram does not show any evidence that the Fe-Fe3C eutectic composition shifts to lower C contents with increasing pressure, which is central to the previous reasoning that the inner core may be composed of Fe3C.  相似文献   
755.
Understanding people’s willingness to participate in projects and programmes of payments for ecosystem services (PES) has not been a key analytical concern of the scholarly literature around this new field of environmental policy and practice. This paper analyses participation in four communities benefiting from payments for biodiversity and carbon fixation in Mexico, and contrasts the results for each case with neighbouring communities that do not receive payments. We take a holistic approach that accounts for procedural rules, actors’ interactions, institutions and values, and individuals’ characteristics. We show that the nature of PES rules and the effectiveness of communication with government officers and NGOs influence resource managers’ ability and willingness to participate. We highlight community size, resource managers’ ability to diversify livelihood activities and local perspectives on the conservation of common forests, particularly sacred values and intergenerational concerns on forest conservation, as critical participation drivers. This analysis provides insights on why and how these new institutions may be attractive for some resource managers and permits to draw some recommendations for the future design of PES projects and programmes.  相似文献   
756.
With recent changes in the ways that state agencies are implementing their environmental policies, the line between public and private is becoming increasingly blurred. This includes shifts from state-led implementation of environmental policies to conservation plans that are implemented and managed by multi-sectoral networks of governments, the private sector and environmental non-governmental organizations (ENGOs). This paper examines land trusts as private conservation initiatives that become part of neoliberal governance arrangements and partnerships that challenge our conceptions of environmental preservation and democratic participation. The paper starts with an examination of the concept of neoliberalized environmental governance. Next, it addresses the shifting social constructions of property and land in the context of protecting large scale ecosystems. Through a case study of the extension of new environmental governance arrangements on the Oak Ridges Moraine in Ontario, we examine the relationships that have formed between different levels of the state and environmental non-governmental organizations. Finally, we analyze the expansion of land trusts and private conservation initiatives that are predicated on private land ownership and the commodification of nature, the emerging discourses and practices of private conservation, and how these are implicated in the privatization and neoliberalization of nature.  相似文献   
757.
Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment.  相似文献   
758.
Our ability to identify thin non-stoichiometric and amorphous layers beneath mineral surfaces has been tested by undertaking X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) work on alkali feldspars from pH 1 dissolution experiments. The outcomes of this work were used to help interpret XPS and TEM results from alkali feldspars weathered for <10,000 years in soils overlying the Shap Granite (north-west England). The chemistry of effluent solutions indicates that silica-rich layers a few nanometers in thickness formed during the pH 1 experiments. These layers can be successfully identified by XPS and have lower Al/Si, Na/Si, K/Si and Ca/Si values than the outermost ∼9 nm of unweathered controls. Development of Al-Si non-stoichiometry is coupled with loss of crystal structure to produce amorphous layers that are identifiable by TEM where >∼2.5 nm thick, whereas the crystallinity of albite is retained despite leaching of Na to depths of tens to hundreds on nanometers. Integration of XPS data over the outermost 6-9 nm of naturally weathered Shap feldspars shows that they have stoichiometric Al/Si and K/Si ratios, which is consistent with findings of previous TEM work on the same material that they lack amorphous layers. There is some XPS evidence for loss of K from the outermost couple of nanometers of Shap orthoclase, and the possibility of leaching of Na from albite to greater depths cannot be excluded using the XPS or TEM results. This study demonstrates that the leached layer model, as formulated from laboratory experiments, is inapplicable to the weathering of alkali feldspars within acidic soils, which is an essentially stoichiometric reaction.  相似文献   
759.
We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As−1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (−1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations.  相似文献   
760.
Microbial mass-dependent fractionation of chromium isotopes   总被引:1,自引:0,他引:1  
Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 μM Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 μM, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号