首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   10篇
  国内免费   4篇
测绘学   5篇
大气科学   25篇
地球物理   42篇
地质学   103篇
海洋学   19篇
天文学   24篇
综合类   1篇
自然地理   35篇
  2024年   2篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   11篇
  2016年   11篇
  2015年   6篇
  2014年   9篇
  2013年   11篇
  2012年   15篇
  2011年   14篇
  2010年   12篇
  2009年   17篇
  2008年   14篇
  2007年   11篇
  2006年   14篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有254条查询结果,搜索用时 15 毫秒
31.
32.
This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone damages under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 478 estimates of the temperature-damage relationship from nineteen studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5 °C increase in global surface air temperature would cause hurricane damages to increase by 63 %. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are +28 % and +23 %, respectively. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.  相似文献   
33.
Analysis of a high‐resolution suite of modern glacial sediments from Jostedalen, southern Norway, using a portable optically stimulated luminescence (OSL) reader, provides insights into the processes of sediment bleaching in glacial environments at the catchment scale. High‐magnitude, low‐frequency processes result in the least effective sediment bleaching, whereas low‐magnitude, high‐frequency events provide greater bleaching opportunities. Changes in sediment bleaching can also be identified at the scale of individual bar features: tails of braid‐bars and side‐attached bar deposits have the lowest portable reader signal intensities, as well as the smallest conventional OSL residual doses. In addition to improving our understanding of the processes of sediment bleaching, portable reader investigations can also facilitate more rapid and comprehensive modern analogue investigations, which are commonly used to confirm that the OSL signals of modern glacial sediments are well bleached.  相似文献   
34.
Tephra stratigraphical and tephrochronological studies of marine core MD99‐2275 on the North Icelandic shelf have revealed 58 new tephra horizons within the last 7050 cal. a BP, bringing the total number of identified tephra layers to 76. So far, over 100 tephra layers have been identified in the entire core spanning the last 15 000 years. The majority of the newly identified tephra layers are basaltic in composition and originate from the most active volcanic systems in Iceland, namely Grímsvötn, Veidivötn‐Bárdarbunga and Katla. A total of 40 tephra layer land–sea correlations have been made within this time period, of which 16 represent absolutely dated tephra markers. In addition, two tephra marker series are revealed in the marine sediments and in the terrestrial tephra stratigraphy, located between c. 2300–2600 and between 5700–5900 years. For the last 15 000 years, 21 tephra markers have been recognized. The marine tephra layer frequency (TLF) reveals two peaks, within the last 2000 years, and between 5000 and 7000 years ago. It shows the same general characteristics as the terrestrial TLF curve in Iceland, which indicates that marine sediments can yield important information about volcanism in Iceland. This is useful in time segments in which terrestrial records are poor or non‐existent. The study contributes to a high‐resolution tephrochronological framework on the North Icelandic shelf, with core MD99‐2275 representing a potential stratotype section in the area, and for the northern North Atlantic–Nordic Seas region, as well as being an important contribution to the Lateglacial–early Holocene volcanic history of Iceland.  相似文献   
35.
36.
37.
38.
The morphological evolution of embayed beaches on a microtidal coast is assumed to largely respond to the degree of exposure to wave conditions, decreasing the mobility with increasing beach indentation (and vice versa). However, the number of sediment arrivals at the beach or the impact of extreme storms can modify this relationship. Here, we present an analysis of 10 embayed beaches along the Catalan coast with different morphometric and sedimentary characteristics to identify the most relevant parameters controlling the morphological evolution of these embayed beaches at the inter-annual and decadal scales. The study was mostly based on LiDAR topographic data collected from 2012 to 2017, aerial photographs from 1945 to 2021, sediment sampling and a long-term series analysis of the forcing parameters (waves, sea level, precipitation and land-use changes). The results show a net loss of volume on all the studied beaches at an inter-annual scale and a general shoreline retreat during the last few decades, suggesting the influence of common processes on the evolution of the studied beaches. Smaller pocket beaches with medium-to-high indentations are more sensitive to changes induced by local factors and show higher variability in the volume of the emerged beach and shoreline position than larger beaches. The most relevant factors influencing the evolution of the studied beaches on a decadal scale were identified as changes in sea level and the reduction in sediment inputs provided by streams due to land-use changes in the drainage basin. At the inter-annual scale, the impact of extreme events is the main factor controlling beach behaviour. These general trends can be opposite locally for beaches that receive large amounts of sediment via longshore transport from adjacent beaches.  相似文献   
39.
Lately, across‐shore zonation has been found to be more important in structuring the nematode community of a tropical macrotidal sandy beach than microhabitat heterogeneity. To evaluate whether this zonation pattern applies to a temperate beach, a macrotidal ridge‐and‐runnels sandy beach in the North Sea was studied. We investigated whether a similar zonation occurs in sandbar and runnel microhabitats, and whether the runnels harbour a different community from the subtidal. Our results indicate that nematode communities from runnel and sandbar habitats are significantly different. In addition, horizontal zonation patterns for nematode communities differ between both habitats. Nematode assemblages from sandbars are divided to lower, middle and upper beach while upper and middle runnels cluster together. The subtidal and upper runnels showed dissimilar nematode assemblages, although runnels showed the same dominant species (Daptonema normandicum), which increases its abundance towards the upper runnels. This study illustrates the importance of microhabitat heterogeneity, which resulted in different zonation patterns across the sandy beach examined. The divergent zonation between sandbars and runnels in the macrotidal temperate sandy beach, compared with the pattern observed for a subtropical sandy beach with similar morphodynamics, indicates that generalizations about nematode distribution patterns should be made with caution.  相似文献   
40.
The Storegga tsunami, dated in Norway to 8150±30 cal. years BP, hit many countries bordering the North Sea. Run-ups of >30 m occurred and 1000s of kilometres of coast were impacted. Whilst recent modelling successfully generated a tsunami wave train, the wave heights and velocities, it under-estimated wave run-ups. Work presented here used luminescence to directly date the Storegga tsunami deposits at the type site of Maryton, Aberdeenshire in Scotland. It also undertook sedimentological characterization to establish provenance, and number and relative power of the tsunami waves. Tsunami model refinement used this to better understand coastal inundation. Luminescence ages successfully date Scottish Storegga tsunami deposits to 8100±250 years. Sedimentology showed that at Montrose, three tsunami waves came from the northeast or east, over-ran pre-existing marine sands and weathered igneous bedrock on the coastal plain. Incorporation of an inundation model predicts well a tsunami impacting on the Montrose Basin in terms of replicate direction and sediment size. However, under-estimation of run-up persisted requiring further consideration of palaeotopography and palaeo-near-shore bathymetry for it to agree with sedimentary evidence. Future model evolution incorporating this will be better able to inform on the hazard risk and potential impacts for future high-magnitude submarine generated tsunami events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号