首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   12篇
  国内免费   1篇
测绘学   6篇
大气科学   10篇
地球物理   62篇
地质学   63篇
海洋学   18篇
天文学   38篇
综合类   1篇
自然地理   16篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   7篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   12篇
  2010年   11篇
  2009年   5篇
  2008年   15篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   17篇
  2003年   5篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有214条查询结果,搜索用时 125 毫秒
91.
A distinctive feature of sandy beaches is the stranded wrack, which represents a key element in the maintenance of their biodiversity and ecosystem function. However, these materials are commonly removed from beaches worldwide. In October–November 2012, a field experiment following an M-BACI design was conducted to assess the effect of wrack removal on sandhopper populations on two sandy beaches on the Atlantic southwest coast of Spain. The beaches, Levante (36°33′N, 6°13′W) and Cortadura (36°28′N, 6°15′W) differed in their morphodynamics (dissipative and intermediate, respectively) and in the dominant wrack sources (seagrasses vs. macroalgae). Wrack removal diminished the density of the sandhopper, Talitrus saltator, a dominant species in the supratidal zone especially under wrack, but the difference between impacted and control plots was short-lived (several days). Juvenile sandhoppers appeared more sensitive to this disturbance than adults, although this was found only at Levante. This study highlights the adaptability of this sandhopper to a single wrack removal event and shows that the magnitude of the effect is likely dependent on the particular characteristics of individual beaches. The consequences of frequent wrack removal from these beaches on sandhopper populations remain to be determined.  相似文献   
92.
93.
Carbon Capture Sequestration (CCS) projects require, for safety reasons, monitoring programmes focused on surveying gas leakage on the surface. Generally, these programmes include detection of chemical tracers that, once on the surface, could be associated with CO2 degassing. We take a different approach by analysing feasibility of applying electrical surface techniques, specifically Self-Potential. A laboratory-scale model, using water-sand, was built for simulating a leakage scenario being monitored with non-polarisable electrodes. Electrical potentials were measured before, during and after gas injection (CO2 and N2) to determine if gas leakage is detectable. Variations of settings were done for assessing how the electrical potentials changed according to size of electrodes, distance from electrodes to the gas source, and type of gas. Results indicated that a degassing event is indeed detectable on electrodes located above injection source. Although the amount of gas could not be quantified from signals, injection timespan and increasing of injection rate were identified. Even though conditions of experiments were highly controlled contrasting to those usually found at field scale, we project that Self-Potential is a promising tool for detecting CO2 leakage if electrodes are properly placed.  相似文献   
94.
95.
Analysis of geothermal and hydrogeologic characteristics of Paleozoic interior basins of Brazil has identified an association between the geographic distribution of thermal springs and areas of occurrences of groundwater flow. Specifically, thermal springs are found to be absent in regions inferred to have lateral flows of groundwater. This trend is evident in the basins of the Amazon region, in the central parts of the Parnaíba basin and in the west-central parts of the Paraná basin. Model studies help to elucidate mutual exclusion of regions of thermal springs and sub-horizontal flows of groundwater. Numerical simulations indicate that groundwater flows with velocities ≥ 1 cm/year are capable of masking the occurrence of thermal anomalies. Also, down flow through distributed recharge zones can lead to development of large zones of relatively low temperature. The observational data sets of temperature gradients and Peclet numbers have been employed outlining advection-convection domains of subsurface strata in the sedimentary basins of the Amazon region, Parnaíba and Paraná. Results obtained indicate that thermal buoyancy forces are incapable of overcoming advective flows in basins of the Amazon region. Similar conditions are also found to prevail in the central parts of the Parnaíba and Paraná basins.  相似文献   
96.
In this paper we discuss the main-phase evolution of intense magnetic storms, associated with the passage of different interplanetary magnetic structures. It is shown that their evolution, driven by intense magnetic fields in the sheath region just behind interplanetary shocks, evolves faster (implying physically different magnetospheric configurations) than that associated with intense magnetic fields in the ejecta itself and in corotating streams. The estimated ring-current injection rate for the main phase of intense magnetic storms caused by sheath fields is ∼10 times greater than the estimated injection rate for N–S magnetic clouds. Based on these results, we propose storm-intensity criteria for several classes of the driving interplanetary structures. The time necessary to reach a Dst/SYM index threshold level is an important parameter for a space weather forecast.  相似文献   
97.
98.
Rigozo  N.R.  Echer  E.  Vieira  L.E.A.  Nordemann  D.J.R. 《Solar physics》2001,203(1):179-191
A reconstruction of sunspot numbers for the last 1000 years was obtained using a sum of sine waves derived from spectral analysis of the time series of sunspot number R z for the period 1700–1999. The time series was decomposed in frequency levels using the wavelet transform, and an iterative regression model (ARIST) was used to identify the amplitude and phase of the main periodicities. The 1000-year reconstructed sunspot number reproduces well the great maximums and minimums in solar activity, identified in cosmonuclides variation records, and, specifically, the epochs of the Oort, Wolf, Spörer, Maunder, and Dalton Minimums as well the Medieval and Modern Maximums. The average sunspot number activity in each anomalous period was used in linear equations to obtain estimates of the solar radio flux F 10.7, solar wind velocity, and the southward component of the interplanetary magnetic field.  相似文献   
99.
Small local earthquakes from two aftershock sequences in Porto dos Gaúchos, Amazon craton—Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q c) of coda waves modeled using Qc = Q0 fhQ_{\rm c} =Q_{\rm 0} f^\eta , where Q 0 is the coda quality factor at frequency of 1 Hz and η is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239–252, 2008), based in the temporal attenuation coefficient, χ(f) instead of Q(f), given by the equation c(f)=g+\fracpfQe \chi (f)\!=\!\gamma \!+\!\frac{\pi f}{Q_{\rm e} }, for the calculation of the geometrical attenuation (γ) and effective attenuation (Qe-1 )(Q_{\rm e}^{-1} ). Q c values have been computed at central frequencies (and band) of 1.5 (1–2), 3.0 (2–4), 6.0 (4–8), 9.0 (6–12), 12 (8–16), and 18 (12–24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin Qc = (98±12)f(1.14±0.08)Q_{\rm c} =(98\pm 12)f^{(1.14\pm 0.08)}, for the surrounding shield Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)}, and for the whole region of Porto dos Gaúchos Qc = (99±19)f(1.17±0.02)Q_{\rm c} =(99\pm 19)f^{(1.17\pm 0.02)}. Using the independent frequency model, we found: for the cratonic zone, γ = 0.014 s − 1, Qe-1 = 0.0001Q_{\rm e}^{-1} =0.0001, ν ≈ 1.12; for the basin zone with sediments of ~500 m, γ = 0.031 s − 1, Qe-1 = 0.0003Q_{\rm e}^{-1} =0.0003, ν ≈ 1.27; and for the Parecis basin with sediments of ~1,000 m, γ = 0.047 s − 1, Qe-1 = 0.0005Q_{\rm e}^{-1} =0.0005, ν ≈ 1.42. Analysis of the attenuation factor (Q c) for different values of the geometrical spreading parameter (ν) indicated that an increase of ν generally causes an increase in Q c, both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, Qc = (78±23)f(1.17±0.14)Q_{\rm c} =(78\pm 23)f^{(1.17\pm 0.14)} (in the deepest part of the basin), than in the basement, Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)} (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.  相似文献   
100.
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground‐based electromagnetic surveys, electrical resistivity models can be obtained to provide high‐resolution three‐dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion‐State (CHI‐S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time‐domain electromagnetic (TDEM) dataset was collected. For this location, a simple two‐dimensional cross‐sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root‐mean‐square error of 1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号