首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   613篇
  免费   33篇
  国内免费   6篇
测绘学   42篇
大气科学   56篇
地球物理   203篇
地质学   201篇
海洋学   30篇
天文学   66篇
综合类   3篇
自然地理   51篇
  2024年   1篇
  2023年   4篇
  2022年   12篇
  2021年   8篇
  2020年   17篇
  2019年   11篇
  2018年   20篇
  2017年   19篇
  2016年   28篇
  2015年   23篇
  2014年   24篇
  2013年   39篇
  2012年   36篇
  2011年   33篇
  2010年   22篇
  2009年   46篇
  2008年   28篇
  2007年   36篇
  2006年   28篇
  2005年   24篇
  2004年   20篇
  2003年   19篇
  2002年   16篇
  2001年   16篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   15篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
排序方式: 共有652条查询结果,搜索用时 31 毫秒
281.
282.
283.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
284.
The ability of wetlands to improve the quality of water has long been recognized and has led to the proliferation of wetlands as a means to treat diffuse and point source pollutants from a range of land uses. However, much of the existing research has been undertaken in temperate climates with a paucity of information on the effectiveness of wetlands, particularly natural wetlands, in tropical regions. This paper contributes to addressing this issue by presenting a comprehensive measurement based assessment of the potential for a naturally occurring tropical riverine wetland to improve the quality of the water entering it. We found small net imports and exports of sediment to/from the wetland in individual years, but over the longer term this kind of wetland is neither a sink nor source of sediment. In contrast, phosphorus was continually removed by the wetland with an overall net reduction of 14%. However, it should be noted that there is no ‘permanent’ gaseous loss mechanism for phosphorus, and its removal from the water column is equal to its accumulation in the wetland soil. We found very little removal of nitrogen by this type of wetland from several analyses including: (i) Surface and groundwater fluxes, (ii) Estimation of water column and soil denitrification rates, (iii) Wetland residence times, and (iv) Hydraulic loading. We also found no clear evidence for transformation of nitrogen to more or less bio‐available forms. Hence, while the benefits of using wetlands to improve water quality in controlled environments have been demonstrated in the literature, these benefits may not always be directly translated to unmanaged natural wetland systems when there is strong seasonality in flows and short residence time during the periods of maximum sediment and nutrient load. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
285.
A new geochemical record from the paaleolake Santiaguillo documents the hydrological variability of sub‐tropical northern Mexico over the last 14 cal. ka. Summer‐season runoff, lake water salinity and deposition of sediments by aeolian activity were reconstructed from concentrations of K, Ca and Zr/K in bulk sediments. More‐than‐average runoff during c. 12.39.3 cal. ka BP represented an interval of enhanced summer precipitation. Arid intervals of c. 1412.3 cal. ka BP and c. 6–4.3 cal. ka BP were characterized by average and more‐than‐average aeolian activity. Comparison with proxy records of summer as well as winter precipitation from tropical and sub‐tropical North America and sea surface temperatures from the Atlantic and Pacific provides insight into the source of moisture and possible forcing. The wet Pleistocene?Holocene transition and early Holocene was contemporary with warmer conditions in the Gulf of California. We suggest that the Atlantic had minimal influence on the summer precipitation of the western part of sub‐tropical northern Mexico and that the source of moisture was dominantly Pacific.  相似文献   
286.
High-resolution pollen and magnetic susceptibility (MS) analyses have been carried out on a sediment core taken from a high-elevation alpine bog area located in Sierra Nevada, southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen record shows a progressive aridification since 7000 cal yr BP that occurred in two steps, first shown by a decrease in Pinus, replaced by Poaceae from 7000 to 4600 cal yr BP and then by Cyperaceae, Artemisia and Amaranthaceae from 4600 to 1200 cal yr BP. Pediastrum also decreased progressively and totally disappeared at ca. 3000 yr ago. The progressive aridification is punctuated by periodically enhanced drought at ca. 6500, 5200 and 4000 cal yr BP that coincide in timing and duration with well-known dry events in the Mediterranean and other areas. Since 1200 cal yr BP, several changes are observed in the vegetation that probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the bog, Pinus reforestation and Olea cultivation at lower elevations.  相似文献   
287.
288.
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MWe). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m−2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they contributed little (<1%) to pre-production CO2 emissions due to the loss of >99% of the original CO2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m−2 d−1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m−2 d−1), the δ13CO2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO2 source for each respective upflow. Flux thresholds of <30 g m−2 d−1 for purely diffusive gas transport, between 30 and 300 g m−2 d−1 for combined diffusive–advective transport, and ?300 g m−2 d−1 for purely advective gas transport at Ohaaki were assigned. δ13CO2 values and cumulative probability plots of CO2 flux data both identified a threshold of ∼15 g m−2 d−1 by which background (atmospheric and soil respired) CO2 may be differentiated from hydrothermal CO2.  相似文献   
289.
Vulnerability of laptop computers to volcanic ash and gas   总被引:1,自引:0,他引:1  
Laptop computers are vital components of critical infrastructure sectors and a common tool in broader society. As they become more widely used, their exposure to volcanic hazards will increase. Therefore, understanding how laptops will function in volcanic environments is necessary to provide suitable mitigation options. In this study, laptop computers were subjected to volcanic ash and gas in both laboratory and field settings. None of the laptops sustained permanent damage in laboratory experiments; however, ash contamination did reduce the functionality of keyboards, CD drives, and cooling fans. Several laptops shut down temporarily due to overheating following ash contamination. In field experiments, laptops were exposed to high concentrations of volcanic gases at White Island, New Zealand. These laptops did not sustain permanent damage as only a small amount of gas was able to enter the laptops. However, metal components on the outside of the laptop did sustain minor corrosion. Re-examination of the laptops after 6?months indicated they were in full working order. Printed circuit boards suffered significant corrosion damage and ceased working only when in direct and sustained contact with volcanic gases. Simple mitigation techniques such as isolating laptops inside heavy duty polyethylene bags were effective. Overall, our experiments demonstrate that laptops have a relatively low risk of damage from volcanic ash and gas exposure, but have a low-medium risk of loss of functionality in ash environments. We think this has implications for other electronic equipment used extensively in critical infrastructure services.  相似文献   
290.
The MESSENGER Fast Imaging Plasma Spectrometer (FIPS) measured the bulk plasma characteristics of Mercury's magnetosphere and solar wind environment during the spacecraft's first two flybys of the planet on 14 January 2008 (M1) and 6 October 2008 (M2), producing the first measurements of thermal ions in Mercury's magnetosphere. In this work, we identify major features of the Mercury magnetosphere in the FIPS proton data and describe the data analysis process used for recovery of proton density (np) and temperature (Tp) with a forward modeling technique, required because of limitations in measurement geometry. We focus on three regions where the magnetospheric flow speed is likely to be low and meets our criteria for the recovery process: the M1 plasma sheet and the M1 and M2 dayside and nightside boundary-layer regions. Interplanetary magnetic field (IMF) conditions were substantially different between the two flybys, with intense reconnection signatures observed by the Magnetometer during M2 versus a relatively quiet magnetosphere during M1. The recovered ion density and temperature values for the M1 quiet-time plasma sheet yielded np∼1–10 cm−3, Tp∼2×106 K, and plasma β∼2. The nightside boundary-layer proton densities during M1 and M2 were similar, at np∼4–5 cm−3, but the temperature during M1 (Tp∼4–8×106 K) was 50% less than during M2 (Tp∼8×106 K), presumably due to reconnection in the tail. The dayside boundary layer observed during M1 had a density of ∼16 cm−3 and temperature of 2×106 K, whereas during M2 this region was less dense and hotter (np∼8 cm−3 and Tp∼10×106 K), again, most likely due to magnetopause reconnection. Overall, the southward interplanetary magnetic field during M2 clearly produced higher Tp in the dayside and nightside magnetosphere, as well as higher plasma β in the nightside boundary, ∼20 during M2 compared with ∼2 during M1. The proton plasma pressure accounts for only a fraction (24% for M1 and 64% for M2) of the drop in magnetic pressure upon entry into the dayside boundary layer. This result suggests that heavy ions of planetary origin, not considered in this analysis, may provide the “missing” pressure. If these planetary ions were hot due to “pickup” in the magnetosheath, the required density for pressure balance would be an ion density of ∼1 cm−3 for an ion temperature of ∼108 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号