首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1418篇
  免费   39篇
  国内免费   9篇
测绘学   61篇
大气科学   104篇
地球物理   315篇
地质学   474篇
海洋学   104篇
天文学   258篇
综合类   5篇
自然地理   145篇
  2021年   14篇
  2020年   13篇
  2019年   14篇
  2018年   32篇
  2017年   32篇
  2016年   35篇
  2015年   22篇
  2014年   30篇
  2013年   83篇
  2012年   58篇
  2011年   59篇
  2010年   54篇
  2009年   65篇
  2008年   65篇
  2007年   63篇
  2006年   47篇
  2005年   52篇
  2004年   34篇
  2003年   43篇
  2002年   42篇
  2001年   25篇
  2000年   45篇
  1999年   23篇
  1998年   23篇
  1997年   21篇
  1996年   21篇
  1995年   21篇
  1994年   13篇
  1993年   22篇
  1992年   21篇
  1991年   15篇
  1990年   23篇
  1989年   16篇
  1988年   18篇
  1987年   19篇
  1986年   14篇
  1985年   15篇
  1984年   22篇
  1983年   26篇
  1982年   19篇
  1981年   15篇
  1980年   16篇
  1979年   8篇
  1977年   11篇
  1976年   10篇
  1975年   12篇
  1974年   10篇
  1973年   10篇
  1972年   19篇
  1971年   12篇
排序方式: 共有1466条查询结果,搜索用时 15 毫秒
81.
82.
Editorial     
  相似文献   
83.
Fault zones are an important control on fluid flow, affecting groundwater supply, contaminant migration, and carbon storage. However, most models of fault seal do not consider fault zone cementation, despite the recognition that it is common and can dramatically reduce permeability. In order to study the field-scale hydrogeologic effects of fault zone cementation, we conducted a series of aquifer pumping tests in wells installed within tens of meters of the variably cemented Loma Blanca Fault, a normal fault in the Rio Grande Rift. In the southern half of the study area, the fault zone is cemented by calcite; the cemented zone is 2-8 m wide. In the center of the study area, the cemented fault zone is truncated at a buttress unconformity that laterally separates hydrostratigraphic units with a ∼40X difference in permeability. The fault zone north of the unconformity is not cemented. Constant rate pumping tests indicate that where the fault is cemented, it is a barrier to groundwater flow. This is an important demonstration that a fault with no clay in its core and similar sediment on both sides can be a barrier to groundwater flow by virtue of its cementation; most conceptual models for the hydrogeology of faults would predict that it would not be a barrier to groundwater flow. Additionally, the lateral permeability heterogeneity across the unconformity imposes another important control on the local flow field. This permeability discontinuity acts as either a no-flow boundary or a constant head boundary, depending on the location of pumping.  相似文献   
84.
Aquifers supporting irrigated agriculture are a resource of global importance. Many of these systems, however, are experiencing significant pumping-induced stress that threatens their continued viability as a water source for irrigation. Reductions in pumping are often the only option to extend the lifespans of these aquifers and the agricultural production they support. The impact of reductions depends on a quantity known as “net inflow” or “capture.” We use data from a network of wells in the western Kansas portions of the High Plains aquifer in the central United States to demonstrate the importance of net inflow, how it can be estimated in the field, how it might vary in response to pumping reductions, and why use of “net inflow” may be preferred over “capture” in certain contexts. Net inflow has remained approximately constant over much of western Kansas for at least the last 15 to 25 years, thereby allowing it to serve as a target for sustainability efforts. The percent pumping reduction required to reach net inflow (i.e., stabilize water levels for the near term [years to a few decades]) can vary greatly over this region, which has important implications for groundwater management. However, the reduction does appear practically achievable (less than 30%) in many areas. The field-determined net inflow can play an important role in calibration of regional groundwater models; failure to reproduce its magnitude and temporal variations should prompt further calibration. Although net inflow is a universally applicable concept, the reliability of field estimates is greatest in seasonally pumped aquifers.  相似文献   
85.
The 14 ka Puketarata eruption of Maroa caldera in Taupo Volcanic Zone was a dome-related event in which the bulk of the 0.25 km3 of eruption products were emplaced as phreatomagmatic fall and surge deposits. A rhyolitic dike encountered shallow groundwater during emplacement along a NE-trending normal fault, leading to shallow-seated explosions characterised by low to moderate water/magma ratios. The eruption products consist of two lava domes, a proximal tuff ring, three phreatic collapse craters, and a widespread fall deposit. The pyroclastic deposits contain dominantly dense juvenile clasts and few foreign lithics, and relate to very shallow-level disruption of the growing dome and its feeder dike with relatively little involvement of country rock. The distal fall deposit, representing 88% of the eruption products is, despite its uniform appearance and apparently subplinian dispersal, a composite feature equivalent to numerous discrete proximal phreatomagmatic lapilli fall layers, each deposited from a short-lived eruption column. The Puketarata products are subdivided into four units related to successive phases of:(A) shallow lava intrusion and initial dome growth; (B) rapid growth and destruction of dome lobes; (C) slower, sustained dome growth and restriction of explosive disruption to the dome margins; and (D) post-dome withdrawal of magma and crater-collapse. Phase D was phreatic, phases A and C had moderate water: magma ratios, and phase B a low water: magma ratio. Dome extrusion was most rapid during phase B, but so was destruction, and hence dome growth was largely accomplished during phase C. The Puketarata eruption illustrates how vent geometry and the presence of groundwater may control the style of silicic volcanism. Early activity was dominated by these external influences and sustained dome growth only followed after effective exclusion of external water from newly emplaced magma.  相似文献   
86.
Submarine pyroclastic eruptions at depths greater than a few hundred meters are generally considered to be rare or absent because the pressure of the overlying water column is sufficient to suppress juvenile gas exsolution so that magmatic disruption and pyroclastic activity do not occur. Consideration of detailed models of the ascent and eruption of magma in a range of sea floor environments shows, however, that significant pyroclastic activity can occur even at depths in excess of 3000 m. In order to document and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent and eruption of magma feeding submarine eruptions: (1) no gas exsolution; (2) gas exsolution but no magma disruption; (3) gas exsolution, magma disruption, and hawaiian-style fountaining; (4) volatile content builds up in the magma reservoir leading to hawaiian eruptions resulting from foam collapse; (5) magma volatile content insufficient to cause fragmentation normally but low rise speed results in strombolian activity; and (6) volatile content builds up in the top of a dike leading to vulcanian eruptions. We also examine the role of bulk-interaction steam explosivity and contact-surface steam explosivity as processes contributing to volcaniclastic formation in these environments. We concur with most earlier workers that for magma compositions typical of spreading centers and their vicinities, the most likely circumstance is the quiet effusion of magma with minor gas exsolution, and the production of somewhat vesicular pillow lavas or sheet flows, depending on effusion rate. The amounts by which magma would overshoot the vent in these types of eruptions would be insufficient to cause any magma disruption. The most likely mechanism of production of pyroclastic deposits in this environment is strombolian activity, due to the localized concentration of volatiles in magma that has a low rise rate; magmatic gas collects by bubble coalescence, and ascends in large isolated bubbles which disrupt the magma surface in the vent, producing localized blocks, bombs, and pyroclastic deposits. Another possible mode of occurrence of pyroclastic deposits results from vulcanian eruptions; these deposits, being characterized by the dominance of angular blocks of country rocks deposited in the vicinity of a crater, should be easily distinguishable from strombolian and hawaiian eruptions. However, we stress that a special case of the hawaiian eruption style is likely to occur in the submarine environment if magmatic gas buildup occurs in a magma reservoir by the upward drift of gas bubbles. In this case, a layer of foam will build up at the top of the reservoir in a sufficient concentration to exceed the volatile content necessary for disruption and hawaiian-style activity; the deposits and landforms are predicted to be somewhat different from those of a typical primary magmatic volatile-induced hawaiian eruption. Specifically, typical pyroclast sizes might be smaller; fountain heights may exceed those expected for the purely magmatic hawaiian case; cooling of descending pyroclasts would be more efficient, leading to different types of proximal deposits; and runout distances for density flows would be greater, potentially leading to submarine pyroclastic deposits surrounding vents out to distances of tens of meters to a kilometer. In addition, flows emerging after the evacuation of the foam layer would tend to be very depleted in volatiles, and thus extremely poor in vesicles relative to typical flows associated with hawaiian-style eruptions in the primary magmatic gas case. We examine several cases of reported submarine volcaniclastic deposits found at depths as great as 3000 m and conclude that submarine hawaiian and strombolian eruptions are much more common than previously suspected at mid-ocean ridges. Furthermore, the latter stages of development of volcanic edifices (seamounts) formed in submarine environments are excellent candidates for a wide range of submarine pyroclastic activity due not just to the effects of decreasing water depth, but also to: (1) the presence of a summit magma reservoir, which favors the buildup of magmatic foams (enhancing hawaiian-style activity) and episodic dike emplacement (which favors strombolian-style eruptions); and (2) the common occurrence of alkalic basalts, the CO2 contents of which favor submarine explosive eruptions at depths greater than tholeiitic basalts. These models and predictions can be tested with future sampling and analysis programs and we provide a checklist of key observations to help distinguish among the eruption styles.  相似文献   
87.
88.
New Zealand's biggest and most destructive volcanic eruption of historical times was that of Tarawera in 1886. The resulting scoria fall has a dispersal very similar in extent to that of the Vesuvius A.D. 79 pumice fall and is one of the few known examples of a basaltic deposit of plinian type. A new estimate of the volume (2 km3) is significantly greater than previous estimates. The basalt came mainly from a 7-km length of fissure, and emission and exit velocity were fairly uniform along at least 4 km of it, this is one of the few documented examples of a plinian eruption from a fissure vent. Primary welding of the scoria fall resulted where the accumulation rate exceeded about 250 mm min−1. A model of the eruption dynamics is proposed which leads to an estimate of 28 km for the height of the eruption cloud and implies a magma volatile fraction of 1.5–3%. Violent phreatic explosions occurred in the southwestern extension of the fissure across the Rotomahana geothermal field, and it is thought that some of the water responsible for the power of the plinian eruption came from this source, though its amount was not sufficient to turn the eruption into a phreatoplinian one.  相似文献   
89.
The accuracy of a numerical method is demonstrated for the dynamic analysis of large complex finite element systems in which the spatial distribution of the loading is constant. The method is based on the use of a special class of Ritz vectors which were previously proposed and can be generated with minimum numerical effort. The purpose of this paper is to extend the use of these vectors to the solution of wave propagation and foundation response problems. The method is applied to one-, twoand three-dimensional problems in order to illustrate the efficiency and accuracy of the technique. Unless it is necessary to evaluate the very high-frequency behaviour of a structural system, it is shown that a small number of Ritz vectors will produce excellent results. Therefore, they can be very effective in the solution of three-dimensional soil-structure systems subjected to earthquake loading.  相似文献   
90.
Arrays of unpumped wells can be used as discontinuous permeable walls in which each well serves both as a means to focus ground water flow into the well for treatment and as a container either for permeable reactive media which directly destroy dissolved ground water contaminants or for devices or materials which release amendments that support in situ degradation of contaminants within the aquifer downgradient of the wells. This paper addresses the use of wells for amendment delivery, recognizing the potential utility of amendments such as electron acceptors (e.g., oxygen nitrate), electron donors (primary substrates), and microbial nutrients for stimulating bioremediation, and the potential utility of oxidizers, reducers, etc., for controlled abiotic degradation. Depending on its rate and constraints, the remedial reaction may occur within the well and/or downgradient. For complete remediation of ground water passing through the well array, the total flux of amendment released must meet or exceed the total flux demand imposed by the plume. When there are constraints on the released concentration of amendment (relative to the demand), close spacing of the wells may be required. If the flux balance allows wider spacing, it is likely that limited downgradient spreading of the released amendment will then be the primary constraint on interwell spacing. Divergent flow from the wells, roughly two times the well diameter, provides the bulk of downgradient spreading and constrains maximum well spacing in the absence of significant lateral dispersion. Stronger lateral dispersion enhances the spreading of amendment, thereby increasing the lateral impact of each well, which allows for wider well spacing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号