首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6052篇
  免费   149篇
  国内免费   62篇
测绘学   123篇
大气科学   532篇
地球物理   1388篇
地质学   2005篇
海洋学   596篇
天文学   961篇
综合类   14篇
自然地理   644篇
  2021年   47篇
  2020年   65篇
  2019年   74篇
  2018年   112篇
  2017年   116篇
  2016年   134篇
  2015年   104篇
  2014年   130篇
  2013年   316篇
  2012年   179篇
  2011年   262篇
  2010年   240篇
  2009年   240篇
  2008年   244篇
  2007年   213篇
  2006年   232篇
  2005年   183篇
  2004年   188篇
  2003年   172篇
  2002年   166篇
  2001年   119篇
  2000年   111篇
  1999年   104篇
  1998年   102篇
  1997年   86篇
  1996年   91篇
  1995年   95篇
  1994年   86篇
  1993年   77篇
  1992年   91篇
  1991年   71篇
  1990年   98篇
  1989年   86篇
  1988年   75篇
  1987年   103篇
  1986年   75篇
  1985年   97篇
  1984年   132篇
  1983年   110篇
  1982年   97篇
  1981年   100篇
  1980年   88篇
  1979年   100篇
  1978年   71篇
  1977年   87篇
  1976年   71篇
  1975年   70篇
  1974年   55篇
  1973年   61篇
  1972年   35篇
排序方式: 共有6263条查询结果,搜索用时 15 毫秒
61.
The tilt angles of sunspot groups are defined, using the Mount Wilson data set. It is shown that groups with tilt angles greater than or less than the average value (≈ 5 deg) show different latitude dependences. This effect is also seen in synoptic magnetic field data defining plages. The fraction of the total sunspot group area that is found in the leading spots is discussed as a parameter that can be useful in studying the dynamics of sunspot groups. This parameter is larger for low tilt angles, and small for extreme tilt angles in either direction. The daily variations of sunspot group tilt angles are discussed. The result that sunspot tilt angles tend to rotate toward the average value is reviewed. It is suggested that at some depth, perhaps 50 Mm, there is a flow relative to the surface that results from a rotation rate faster than the surface rate by about 60 m/sec and a meridional drift that is slower than the surface rate by about 5 m/sec. This results in a slanted relative flow at that depth that is in the direction of the average tilt angle and may be responsible for the tendency for sunspot groups (and plages) to rotate their magnetic axes in the direction of the average tilt angle.  相似文献   
62.
In order to decide whether the seeing conditions at SAAO/Sutherland justify the erection of a 3.5 m telescope and also to compare Sutherland with the Gamsberg/Namibia site, a seeing campaign covering 15 months has been carried out. For direct comparison with the results of the seeing campaign at Gamsberg twenty years before the same QUESTAR telescope was employed. The seeing is determined by the scattering of the star-trail exposed on a film in the focal plane of the telescope. The campaign commenced in February 1992. Up to May 1993, data for 204 nights, that is 47.3% of the total number of nights, were collected. Due to wind speeds above 30 km h-1, 25 out of the 204 nights were not considered in the final reduction. The useful 179 nights are evenly distributed over the campaign period. The median seeing value for the whole period is = 0.52. There are differences during the year: the best season gives = 0.42, the worst = 0.67. Each night was divided into three intervals, although data for each of the three intervals were not always available. Generally, there is an improvement in the seeing during the course of a night. The results are compared to the seeing values of Gamsberg/Namibia and ESO/La Silla.  相似文献   
63.
A two-dimensional nonlinear hydrodynamic model has been developed for studying the global scale winds, temperature, and compositional structure of the mesosphere and thermosphere of Venus. The model is driven by absorption of solar radiation. Ultraviolet radiation produces both heating and photodissociation. Infrared solar heating and thermal cooling are also included with an accurate NLTE treatment. The most crucial uncertainty in determining the solar drive is the efficiency by which λ < 1080 A? solar radiation is converted to heat. This question was analyzed in Part I, where it was concluded that essentially all hot atom and O(1D) energy may be transferred to vibrational-rotational energy of CO2 molecules. If this is so, the minimum possible euv heating occurs and is determined by the quenching of the resulting excess rotational energy. The hydrodynamic model is integrated with this minimum heating and neglecting any small-scale vertical eddy mixing. The results are compared with predictions of another model with the same physics except that it assumes that 30% of λ < 1080 A? radiation goes into heat and that the heating from longer-wavelength radiation includes the O(1D) energy. For the low-efficiency model, exospheric temperatures are ?300°K on the dayside and drop to < 180°K at the antisolar point. For the higher-efficiency model, the day-to-night temperature variation is from ?600°K to ?250°K. Both versions of the model predict a wind of several hundred meters per second blowing across the terminator and abruptly weakening to small values on the nightside with the mass flow consequently going into a strong tongue of downward motion on the nightside of the terminator. The presence of this circulation could be tested observationally by seeing if its signature can be found in temperature measurements. Both versions of the model indicate that a self-consistent large-scale circulation would maintain oxygen concentrations with ?5% mixing ratios near the dayside F-1 ionospheric peak but ?40% at the antisolar point at the same pressure level.  相似文献   
64.
We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar?Cheliospheric?Cplanetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March??C?16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth??s mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.  相似文献   
65.
66.
67.
The ability to test for similarities and differences among families of shapes by closed-form Fourier expansion is greatly enhanced by the concept of homology. Underlying this concept is the assumption that each term of a Fourier series, when compared to the same term in another series, represents the same thing. A method that ensures homology is one which minimizes the centering error, as reflected in the first harmonic term of the Fourier expansion. The problem is to chose a set of edge points derived from a much larger, but variable, number of edge points such that a valid homologous Fourier series can be calculated. Methods are reviewed and criteria given to define a proper solution. An algorithm is presented which takes advantage of the fact that minimization of the error term can be accomplished by minimizing the distance between the origin of the polar coordinate system in the calculation of the Fourier series and the shape centroid. The use of this algorithm has produced higher quality solutions for quartz grain provenance studies.  相似文献   
68.
Achieving subarcsecond co-registration across varying time-lines of multi-wavelength and instrument images is difficult and requires an accurate characterization of the instrument pointing jitter. We investigated the internal pointing errors on daily and yearly time-scales that occur across the Solar Dynamics Observatory’s (SDO) Atmospheric Imaging Assembly (AIA) and Helioseismic Magnetic Imager (HMI). Using cross-correlation techniques on the AIA 1700 Å passband and the HMI line-of-sight magnetograms from three years of observational image pairs at approximately three-day intervals, internal pointing errors were quantified. Pointing variations of ±?0.26″ (jitter-limited) and ±?0.50″ in the solar East–West (x) and North–South (y) directions, respectively, were measured. AIA observations of the Venus transit in June 2012 were used to measure existing coalignment offsets in all passbands. We found that the AIA passband pointing variations are 〈ΔX CO〉=1.10″±1.41″ and 〈ΔY CO〉=1.25″±1.24″ when aligned to the HMI nominal image center, referred to here as the CutOut technique. Minimal long-term pointing variations found between limb and correlation derived pointings provide evidence that the image-center positions provided by the instrument teams achieve single-pixel accuracy on time scales shorter than their characterization. However, daily AIA passband pointing variations of ??1.18″ indicate that autonomous subarcsecond co-registration is not fully achieved yet.  相似文献   
69.
Disk-integrated solar chromospheric Caii K-line (3933.68 ) fluxes have been measured almost daily at Sacramento Peak Observatory since 1977. Using observing windows selected to mimic seasonal windows for chromospheric measurements of lower Main-Sequence stars such as those observed by Mount Wilson Observatory's HK Project, we have measured the solar rotation from the modulation of the Caii K-line flux. We track the change of rotation period from the decline of cycle 21 through the maximum of cycle 22. This variation in rotation period is shown to behave as expected from the migration of active regions in latitude according to Maunder's butterfly diagram, including an abrupt change in rotation period at the transition from cycle 21 to cycle 22. These results indicate the successful detection of solar surface differential rotation from disk-integrated observations. We argue that the success of our study compared to previous investigations of the solar surface differential rotation from disk-integrated fluxes lies primarily with the choice of the length of the time-series window. Our selection of 200 days is shorter than in previous studies whose windows are typically on the order of one year. The 200-day window is long enough to permit an accurate determination of the rotation period, yet short enough to avoid complications arising from active region evolution. Thus, measurements of the variation of rotation period in lower Main-Sequence stars, especially those that appear to be correlated with long-term changes in chromospheric activity (i.e., cycles), are probably evidence for stellar surface differential rotation.  相似文献   
70.
Wilson  Robert M. 《Solar physics》1998,182(1):217-230
Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, observed the Sun routinely from Dessau, Germany during the interval of 1826–1868, averaging about 290 observing days per year. His yearly counts of ‘clusters of spots’ (or, more correctly, the yearly number of newly appearing sunspot groups) provided a simple means for describing the overt features of the sunspot cycle (i.e., the timing and relative strengths of cycle minimum and maximum). In 1848, Rudolf Wolf, a Swiss astronomer, having become aware of Schwabe's discovery, introduced his now familiar ‘relative sunspot number’ and established an international cadre of observers for monitoring the future behavior of the sunspot cycle and for reconstructing its past behavior (backwards in time to 1818, based on daily sunspot number estimates). While Wolf's reconstruction is complete (without gaps) only from 1849 (hence, the beginning of the modern era), the immediately preceding interval of 1818–1848 is incomplete, being based on an average of 260 observing days per year. In this investigation, Wolf's reconstructed record of annual sunspot number is compared against Schwabe's actual observing record of yearly counts of clusters of spots. The comparison suggests that Wolf may have misplaced (by about 1–2 yr) and underestimated (by about 16 units of sunspot number) the maximum amplitude for cycle 7. If true, then, cycle 7's ascent and descent durations should measure about 5 years each instead of 7 and 3 years, respectively, the extremes of the distributions, and its maximum amplitude should measure about 86 instead of 70. This study also indicates that cycle 9's maximum amplitude is more reliably determined than cycle 8's and that both appear to be of comparable size (about 130 units of sunspot number) rather than being significantly different. Therefore, caution is urged against the indiscriminate use of the pre-modern era sunspot numbers in long-term studies of the sunspot cycle, since such use may lead to specious results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号